# # Copyright 2005,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import math from gnuradio import gr, filter from fm_emph import fm_preemph try: from gnuradio import analog except ImportError: import analog_swig as analog class nbfm_tx(gr.hier_block2): def __init__(self, audio_rate, quad_rate, tau=75e-6, max_dev=5e3, fh=-1.0): """ Narrow Band FM Transmitter. Takes a single float input stream of audio samples in the range [-1,+1] and produces a single FM modulated complex baseband output. Args: audio_rate: sample rate of audio stream, >= 16k (integer) quad_rate: sample rate of output stream (integer) tau: preemphasis time constant (default 75e-6) (float) max_dev: maximum deviation in Hz (default 5e3) (float) fh: high frequency at which to flatten preemphasis; < 0 means default of 0.925*quad_rate/2.0 (float) quad_rate must be an integer multiple of audio_rate. """ gr.hier_block2.__init__(self, "nbfm_tx", gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature # FIXME audio_rate and quad_rate ought to be exact rationals self._audio_rate = audio_rate = int(audio_rate) self._quad_rate = quad_rate = int(quad_rate) if quad_rate % audio_rate != 0: raise ValueError, "quad_rate is not an integer multiple of audio_rate" do_interp = audio_rate != quad_rate if do_interp: interp_factor = quad_rate / audio_rate interp_taps = filter.optfir.low_pass(interp_factor, # gain quad_rate, # Fs 4500, # passband cutoff 7000, # stopband cutoff 0.1, # passband ripple dB 40) # stopband atten dB #print "len(interp_taps) =", len(interp_taps) self.interpolator = filter.interp_fir_filter_fff (interp_factor, interp_taps) self.preemph = fm_preemph(quad_rate, tau=tau, fh=fh) k = 2 * math.pi * max_dev / quad_rate self.modulator = analog.frequency_modulator_fc(k) if do_interp: self.connect(self, self.interpolator, self.preemph, self.modulator, self) else: self.connect(self, self.preemph, self.modulator, self) def set_max_deviation(self, max_dev): k = 2 * math.pi * max_dev / self._quad_rate self.modulator.set_sensitivity(k) class ctcss_gen_f(gr.hier_block2): def __init__(self, sample_rate, tone_freq): gr.hier_block2.__init__(self, "ctcss_gen_f", gr.io_signature(0, 0, 0), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature self.plgen = analog.sig_source_f(sample_rate, analog.GR_SIN_WAVE, tone_freq, 0.1, 0.0) self.connect(self.plgen, self)