/* -*- c++ -*- */ /* * Copyright 2004,2010,2012,2018 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "sig_source_impl.h" #include <gnuradio/gr_complex.h> #include <gnuradio/io_signature.h> #include <gnuradio/math.h> #include <algorithm> #include <stdexcept> namespace gr { namespace analog { template <class T> typename sig_source<T>::sptr sig_source<T>::make( double sampling_freq, gr_waveform_t waveform, double frequency, double ampl, T offset, float phase) { return gnuradio::get_initial_sptr( new sig_source_impl<T>(sampling_freq, waveform, frequency, ampl, offset, phase)); } template <class T> sig_source_impl<T>::sig_source_impl( double sampling_freq, gr_waveform_t waveform, double frequency, double ampl, T offset, float phase) : sync_block("sig_source", io_signature::make(0, 0, 0), io_signature::make(1, 1, sizeof(T))), d_sampling_freq(sampling_freq), d_waveform(waveform), d_frequency(frequency), d_ampl(ampl), d_offset(offset) { this->set_frequency(frequency); this->set_phase(phase); this->message_port_register_in(pmt::mp("freq")); this->set_msg_handler(pmt::mp("freq"), boost::bind(&sig_source_impl<T>::set_frequency_msg, this, _1)); } template <class T> sig_source_impl<T>::~sig_source_impl() {} template <class T> void sig_source_impl<T>::set_frequency_msg(pmt::pmt_t msg) { // Accepts either a number that is assumed to be the new // frequency or a key:value pair message where the key must be // "freq" and the value is the new frequency. if (pmt::is_number(msg)) { set_frequency(pmt::to_double(msg)); } else if (pmt::is_pair(msg)) { pmt::pmt_t key = pmt::car(msg); pmt::pmt_t val = pmt::cdr(msg); if (pmt::eq(key, pmt::intern("freq"))) { if (pmt::is_number(val)) { set_frequency(pmt::to_double(val)); } } else { GR_LOG_WARN(this->d_logger, boost::format("Set Frequency Message must have " "the key = 'freq'; got '%1%'.") % pmt::write_string(key)); } } else { GR_LOG_WARN(this->d_logger, "Set Frequency Message must be either a number or a " "key:value pair where the key is 'freq'."); } } template <class T> int sig_source_impl<T>::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { T* optr = (T*)output_items[0]; T t; gr::thread::scoped_lock l(this->d_setlock); switch (d_waveform) { case GR_CONST_WAVE: t = (T)d_ampl + d_offset; std::fill_n(optr, noutput_items, t); break; case GR_SIN_WAVE: d_nco.sin(optr, noutput_items, d_ampl); if (d_offset == 0) break; for (int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; case GR_COS_WAVE: d_nco.cos(optr, noutput_items, d_ampl); if (d_offset == 0) break; for (int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; /* The square wave is high from -PI to 0. */ case GR_SQR_WAVE: t = (T)d_ampl + d_offset; for (int i = 0; i < noutput_items; i++) { if (d_nco.get_phase() < 0) optr[i] = t; else optr[i] = d_offset; d_nco.step(); } break; /* The triangle wave rises from -PI to 0 and falls from 0 to PI. */ case GR_TRI_WAVE: for (int i = 0; i < noutput_items; i++) { double t = d_ampl * d_nco.get_phase() / GR_M_PI; if (d_nco.get_phase() < 0) optr[i] = static_cast<T>(t + d_ampl + d_offset); else optr[i] = static_cast<T>(-1 * t + d_ampl + d_offset); d_nco.step(); } break; /* The saw tooth wave rises from -PI to PI. */ case GR_SAW_WAVE: for (int i = 0; i < noutput_items; i++) { t = static_cast<T>(d_ampl * d_nco.get_phase() / (2 * GR_M_PI) + d_ampl / 2 + d_offset); optr[i] = t; d_nco.step(); } break; default: throw std::runtime_error("analog::sig_source: invalid waveform"); } return noutput_items; } template <> int sig_source_impl<gr_complex>::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { gr_complex* optr = (gr_complex*)output_items[0]; gr_complex t; gr::thread::scoped_lock l(this->d_setlock); switch (d_waveform) { case GR_CONST_WAVE: t = (gr_complex)d_ampl + d_offset; std::fill_n(optr, noutput_items, t); break; case GR_SIN_WAVE: case GR_COS_WAVE: d_nco.sincos(optr, noutput_items, d_ampl); if (d_offset == gr_complex(0, 0)) break; for (int i = 0; i < noutput_items; i++) { optr[i] += d_offset; } break; /* Implements a real square wave high from -PI to 0. * The imaginary square wave leads by 90 deg. */ case GR_SQR_WAVE: for (int i = 0; i < noutput_items; i++) { if (d_nco.get_phase() < -1 * GR_M_PI / 2) optr[i] = gr_complex(d_ampl, 0) + d_offset; else if (d_nco.get_phase() < 0) optr[i] = gr_complex(d_ampl, d_ampl) + d_offset; else if (d_nco.get_phase() < GR_M_PI / 2) optr[i] = gr_complex(0, d_ampl) + d_offset; else optr[i] = d_offset; d_nco.step(); } break; /* Implements a real triangle wave rising from -PI to 0 and * falling from 0 to PI. The imaginary triangle wave leads by * 90 deg. */ case GR_TRI_WAVE: for (int i = 0; i < noutput_items; i++) { if (d_nco.get_phase() < -1 * GR_M_PI / 2) { optr[i] = gr_complex(d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl, -1 * d_ampl * d_nco.get_phase() / GR_M_PI - d_ampl / 2) + d_offset; } else if (d_nco.get_phase() < 0) { optr[i] = gr_complex(d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl, d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl / 2) + d_offset; } else if (d_nco.get_phase() < GR_M_PI / 2) { optr[i] = gr_complex(-1 * d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl, d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl / 2) + d_offset; } else { optr[i] = gr_complex(-1 * d_ampl * d_nco.get_phase() / GR_M_PI + d_ampl, -1 * d_ampl * d_nco.get_phase() / GR_M_PI + 3 * d_ampl / 2) + d_offset; } d_nco.step(); } break; /* Implements a real saw tooth wave rising from -PI to PI. * The imaginary saw tooth wave leads by 90 deg. */ case GR_SAW_WAVE: for (int i = 0; i < noutput_items; i++) { if (d_nco.get_phase() < -1 * GR_M_PI / 2) { optr[i] = gr_complex(d_ampl * d_nco.get_phase() / (2 * GR_M_PI) + d_ampl / 2, d_ampl * d_nco.get_phase() / (2 * GR_M_PI) + 5 * d_ampl / 4) + d_offset; } else { optr[i] = gr_complex(d_ampl * d_nco.get_phase() / (2 * GR_M_PI) + d_ampl / 2, d_ampl * d_nco.get_phase() / (2 * GR_M_PI) + d_ampl / 4) + d_offset; } d_nco.step(); } break; default: throw std::runtime_error("analog::sig_source: invalid waveform"); } return noutput_items; } template <class T> void sig_source_impl<T>::set_sampling_freq(double sampling_freq) { d_sampling_freq = sampling_freq; d_nco.set_freq(2 * GR_M_PI * this->d_frequency / this->d_sampling_freq); } template <class T> void sig_source_impl<T>::set_waveform(gr_waveform_t waveform) { d_waveform = waveform; } template <class T> void sig_source_impl<T>::set_frequency(double frequency) { d_frequency = frequency; d_nco.set_freq(2 * GR_M_PI * this->d_frequency / this->d_sampling_freq); } template <class T> void sig_source_impl<T>::set_amplitude(double ampl) { d_ampl = ampl; } template <class T> void sig_source_impl<T>::set_offset(T offset) { d_offset = offset; } template <class T> void sig_source_impl<T>::set_phase(float phase) { gr::thread::scoped_lock l(this->d_setlock); d_nco.set_phase(phase); } template class sig_source<std::int16_t>; template class sig_source<std::int32_t>; template class sig_source<float>; template class sig_source<gr_complex>; } /* namespace analog */ } /* namespace gr */