/* -*- c++ -*- */ /* * Copyright 2004,2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_ANALOG_QUADRATURE_DEMOD_CF_H #define INCLUDED_ANALOG_QUADRATURE_DEMOD_CF_H #include <gnuradio/analog/api.h> #include <gnuradio/sync_block.h> namespace gr { namespace analog { /*! * \brief quadrature demodulator: complex in, float out * \ingroup modulators_blk * * \details * This can be used to demod FM, FSK, GMSK, etc. The input is complex * baseband, output is the signal frequency in relation to the sample * rated, multiplied with the gain. * * Mathematically, this block calculates the product of the one-sample * delayed input and the conjugate undelayed signal, and then calculates * the argument of the resulting complex number: * * \f$y[n] = \mathrm{arg}\left(x[n] \, \bar x [n-1]\right)\f$. * * Let \f$x\f$ be a complex sinusoid with amplitude \f$A>0\f$, (absolute) * frequency \f$f\in\mathbb R\f$ and phase \f$\phi_0\in[0;2\pi]\f$ sampled at * \f$f_s>0\f$ so, without loss of generality, * * \f$x[n]= A e^{j2\pi( \frac f{f_s} n + \phi_0)}\f$ * * then * * \f{align*}{ y[n] &= \mathrm{arg}\left(A e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} \overline{A e^{j2\pi( \frac f{f_s} (n-1) + \phi_0)}}\right)\\ * & = \mathrm{arg}\left(A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} e^{-j2\pi( \frac f{f_s} (n-1) + \phi_0)}\right)\\ * & = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0 - \frac f{f_s} (n-1) - \phi_0\right)}\right)\\ * & = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n - \frac f{f_s} (n-1)\right)}\right)\\ * & = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} \left(n-(n-1)\right)\right)}\right)\\ * & = \mathrm{arg}\left( A^2 e^{j2\pi \frac f{f_s}}\right) \intertext{$A$ is real, so is $A^2$ and hence only \textit{scales}, therefore $\mathrm{arg}(\cdot)$ is invariant:} &= \mathrm{arg}\left(e^{j2\pi \frac f{f_s}}\right)\\ * &= \frac f{f_s}\\ * &&\blacksquare * \f} */ class ANALOG_API quadrature_demod_cf : virtual public sync_block { public: // gr::analog::quadrature_demod_cf::sptr typedef boost::shared_ptr<quadrature_demod_cf> sptr; /* \brief Make a quadrature demodulator block. * * \param gain Gain setting to adjust the output amplitude. Set * based on converting the phase difference between * samples to a nominal output value. */ static sptr make(float gain); virtual void set_gain(float gain) = 0; virtual float gain() const = 0; }; } /* namespace analog */ } /* namespace gr */ #endif /* INCLUDED_ANALOG_QUADRATURE_DEMOD_CF_H */