#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # from gnuradio import gr from gnuradio import blocks from gnuradio import filter from gnuradio.fft import window from gnuradio import analog from gnuradio import channels import sys import math import time import numpy try: import pylab except ImportError: print("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).") sys.exit(1) class fmtx(gr.hier_block2): def __init__(self, lo_freq, audio_rate, if_rate): gr.hier_block2.__init__(self, "build_fm", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(1, 1, gr.sizeof_gr_complex)) fmtx = analog.nbfm_tx(audio_rate, if_rate, max_dev=5e3, tau=75e-6, fh=0.925 * if_rate / 2.0) # Local oscillator lo = analog.sig_source_c(if_rate, # sample rate analog.GR_SIN_WAVE, # waveform type lo_freq, # frequency 1.0, # amplitude 0) # DC Offset mixer = blocks.multiply_cc() self.connect(self, fmtx, (mixer, 0)) self.connect(lo, (mixer, 1)) self.connect(mixer, self) class fmtest(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._nsamples = 1000000 self._audio_rate = 8000 # Set up N channels with their own baseband and IF frequencies self._N = 5 chspacing = 16000 freq = [10, 20, 30, 40, 50] f_lo = [0, 1 * chspacing, -1 * chspacing, 2 * chspacing, -2 * chspacing] self._if_rate = 4 * self._N * self._audio_rate # Create a signal source and frequency modulate it self.sum = blocks.add_cc() for n in range(self._N): sig = analog.sig_source_f( self._audio_rate, analog.GR_SIN_WAVE, freq[n], 0.5) fm = fmtx(f_lo[n], self._audio_rate, self._if_rate) self.connect(sig, fm) self.connect(fm, (self.sum, n)) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamples) self.snk_tx = blocks.vector_sink_c() self.channel = channels.channel_model(0.1) self.connect(self.sum, self.head, self.channel, self.snk_tx) # Design the channlizer self._M = 10 bw = chspacing / 2.0 t_bw = chspacing / 10.0 self._chan_rate = self._if_rate / self._M self._taps = filter.firdes.low_pass_2(1, self._if_rate, bw, t_bw, attenuation_dB=100, window=window.WIN_BLACKMAN_hARRIS) tpc = math.ceil(float(len(self._taps)) / float(self._M)) print("Number of taps: ", len(self._taps)) print("Number of channels: ", self._M) print("Taps per channel: ", tpc) self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) self.connect(self.channel, self.pfb) # Create a file sink for each of M output channels of the filter and connect it self.fmdet = list() self.squelch = list() self.snks = list() for i in range(self._M): self.fmdet.append(analog.nbfm_rx( self._audio_rate, self._chan_rate)) self.squelch.append(analog.standard_squelch(self._audio_rate * 10)) self.snks.append(blocks.vector_sink_f()) self.connect( (self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i]) def num_tx_channels(self): return self._N def num_rx_channels(self): return self._M def main(): fm = fmtest() tstart = time.time() fm.run() tend = time.time() if 1: fig1 = pylab.figure(1, figsize=(12, 10), facecolor="w") fig2 = pylab.figure(2, figsize=(12, 10), facecolor="w") fig3 = pylab.figure(3, figsize=(12, 10), facecolor="w") Ns = 10000 Ne = 100000 fftlen = 8192 winfunc = numpy.blackman # Plot transmitted signal fs = fm._if_rate d = fm.snk_tx.data()[Ns:Ns + Ne] sp1_f = fig1.add_subplot(2, 1, 1) X, freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs, window=lambda d: d * winfunc(fftlen), visible=False) X_in = 10.0 * numpy.log10(abs(numpy.fft.fftshift(X))) f_in = numpy.arange(-fs / 2.0, fs / 2.0, fs / float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in) + 1]) sp1_f.set_ylim([-120.0, 20.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0 / fs Tmax = len(d) * Ts t_in = numpy.arange(0, Tmax, Ts) x_in = numpy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-5, 5]) # Set up the number of rows and columns for plotting the subfigures Ncols = int(numpy.floor(numpy.sqrt(fm.num_rx_channels()))) Nrows = int(numpy.floor(fm.num_rx_channels() / Ncols)) if(fm.num_rx_channels() % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = fm._audio_rate for i in range(len(fm.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = fm.snks[i].data()[Ns:Ne] sp2_f = fig2.add_subplot(Nrows, Ncols, 1 + i) X, freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs_o, window=lambda d: d * winfunc(fftlen), visible=False) #X_o = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) X_o = 10.0 * numpy.log10(abs(X)) #f_o = numpy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) f_o = numpy.arange(0, fs_o / 2.0, fs_o / 2.0 / float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o) + 0.1]) sp2_f.set_ylim([-120.0, 20.0]) sp2_f.grid(True) sp2_f.set_title(("Channel %d" % i), weight="bold") sp2_f.set_xlabel("Frequency (kHz)") sp2_f.set_ylabel("Power (dBW)") Ts = 1.0 / fs_o Tmax = len(d) * Ts t_o = numpy.arange(0, Tmax, Ts) x_t = numpy.array(d) sp2_t = fig3.add_subplot(Nrows, Ncols, 1 + i) p2_t = sp2_t.plot(t_o, x_t.real, "b") p2_t = sp2_t.plot(t_o, x_t.imag, "r") sp2_t.set_xlim([min(t_o), max(t_o) + 1]) sp2_t.set_ylim([-1, 1]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": main()