/* -*- c++ -*- */ /* * Copyright 2006,2007,2009,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "hier_block2_detail.h" #include <gnuradio/io_signature.h> #include <gnuradio/prefs.h> #include <stdexcept> #include <sstream> #include <boost/format.hpp> namespace gr { #define HIER_BLOCK2_DETAIL_DEBUG 0 hier_block2_detail::hier_block2_detail(hier_block2 *owner) : d_owner(owner), d_parent_detail(0), d_fg(make_flowgraph()) { int min_inputs = owner->input_signature()->min_streams(); int max_inputs = owner->input_signature()->max_streams(); int min_outputs = owner->output_signature()->min_streams(); int max_outputs = owner->output_signature()->max_streams(); if(max_inputs == io_signature::IO_INFINITE || max_outputs == io_signature::IO_INFINITE || (min_inputs != max_inputs) ||(min_outputs != max_outputs) ) { std::stringstream msg; msg << "Hierarchical blocks do not yet support arbitrary or" << " variable numbers of inputs or outputs (" << d_owner->name() << ")"; throw std::runtime_error(msg.str()); } d_inputs = std::vector<endpoint_vector_t>(max_inputs); d_outputs = endpoint_vector_t(max_outputs); d_max_output_buffer = std::vector<size_t>(std::max(max_outputs,1), 0); d_min_output_buffer = std::vector<size_t>(std::max(max_outputs,1), 0); } hier_block2_detail::~hier_block2_detail() { d_owner = 0; // Don't use delete, we didn't allocate } void hier_block2_detail::connect(basic_block_sptr block) { std::stringstream msg; // Check if duplicate if(std::find(d_blocks.begin(), d_blocks.end(), block) != d_blocks.end()) { msg << "Block " << block << " already connected."; throw std::invalid_argument(msg.str()); } // Check if has inputs or outputs if(block->input_signature()->max_streams() != 0 || block->output_signature()->max_streams() != 0) { msg << "Block " << block << " must not have any input or output ports"; throw std::invalid_argument(msg.str()); } hier_block2_sptr hblock(cast_to_hier_block2_sptr(block)); if(hblock && hblock.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "connect: block is hierarchical, setting parent to " << this << std::endl; hblock->d_detail->d_parent_detail = this; } d_blocks.push_back(block); } void hier_block2_detail::connect(basic_block_sptr src, int src_port, basic_block_sptr dst, int dst_port) { std::stringstream msg; if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "connecting: " << endpoint(src, src_port) << " -> " << endpoint(dst, dst_port) << std::endl; if(src.get() == dst.get()) throw std::invalid_argument("connect: src and destination blocks cannot be the same"); hier_block2_sptr src_block(cast_to_hier_block2_sptr(src)); hier_block2_sptr dst_block(cast_to_hier_block2_sptr(dst)); if(src_block && src.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "connect: src is hierarchical, setting parent to " << this << std::endl; src_block->d_detail->d_parent_detail = this; } if(dst_block && dst.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "connect: dst is hierarchical, setting parent to " << this << std::endl; dst_block->d_detail->d_parent_detail = this; } // Connections to block inputs or outputs int max_port; if(src.get() == d_owner) { max_port = src->input_signature()->max_streams(); if((max_port != -1 && (src_port >= max_port)) || src_port < 0) { msg << "source port " << src_port << " out of range for " << src; throw std::invalid_argument(msg.str()); } return connect_input(src_port, dst_port, dst); } if(dst.get() == d_owner) { max_port = dst->output_signature()->max_streams(); if((max_port != -1 && (dst_port >= max_port)) || dst_port < 0) { msg << "destination port " << dst_port << " out of range for " << dst; throw std::invalid_argument(msg.str()); } return connect_output(dst_port, src_port, src); } // Internal connections d_fg->connect(src, src_port, dst, dst_port); // TODO: connects to NC } void hier_block2_detail::msg_connect(basic_block_sptr src, pmt::pmt_t srcport, basic_block_sptr dst, pmt::pmt_t dstport) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "connecting message port..." << std::endl; // add block uniquely to list to internal blocks if(std::find(d_blocks.begin(), d_blocks.end(), dst) == d_blocks.end()){ d_blocks.push_back(src); d_blocks.push_back(dst); } bool hier_in=false, hier_out=false; if(d_owner == src.get()){ hier_out = src->message_port_is_hier_in(srcport); } else if (d_owner == dst.get()){ hier_in = dst->message_port_is_hier_out(dstport);; } else { hier_out = src->message_port_is_hier_out(srcport); hier_in = dst->message_port_is_hier_in(dstport); } hier_block2_sptr src_block(cast_to_hier_block2_sptr(src)); hier_block2_sptr dst_block(cast_to_hier_block2_sptr(dst)); if(src_block && src.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "msg_connect: src is hierarchical, setting parent to " << this << std::endl; src_block->d_detail->d_parent_detail = this; } if(dst_block && dst.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "msg_connect: dst is hierarchical, setting parent to " << this << std::endl; dst_block->d_detail->d_parent_detail = this; } // add edge for this message connection if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << boost::format("msg_connect( (%s, %s, %d), (%s, %s, %d) )\n") % \ src % srcport % hier_out % dst % dstport % hier_in; d_fg->connect(msg_endpoint(src, srcport, hier_out), msg_endpoint(dst, dstport, hier_in)); } void hier_block2_detail::msg_disconnect(basic_block_sptr src, pmt::pmt_t srcport, basic_block_sptr dst, pmt::pmt_t dstport) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnecting message port..." << std::endl; // remove edge for this message connection bool hier_in=false, hier_out=false; if(d_owner == src.get()){ hier_out = src->message_port_is_hier_in(srcport); } else if (d_owner == dst.get()){ hier_in = dst->message_port_is_hier_out(dstport);; } else { hier_out = src->message_port_is_hier_out(srcport); hier_in = dst->message_port_is_hier_in(dstport); } d_fg->disconnect(msg_endpoint(src, srcport, hier_out), msg_endpoint(dst, dstport, hier_in)); hier_block2_sptr src_block(cast_to_hier_block2_sptr(src)); hier_block2_sptr dst_block(cast_to_hier_block2_sptr(dst)); if (src_block && src.get() != d_owner) { // if the source is hier, we need to resolve the endpoint before calling unsub msg_edge_vector_t edges = src_block->d_detail->d_fg->msg_edges(); for (msg_edge_viter_t it = edges.begin(); it != edges.end(); ++it) { if ((*it).dst().block() == src) { src = (*it).src().block(); srcport = (*it).src().port(); } } } if (dst_block && dst.get() != d_owner) { // if the destination is hier, we need to resolve the endpoint before calling unsub msg_edge_vector_t edges = dst_block->d_detail->d_fg->msg_edges(); for (msg_edge_viter_t it = edges.begin(); it != edges.end(); ++it) { if ((*it).src().block() == dst) { dst = (*it).dst().block(); dstport = (*it).dst().port(); } } } // unregister the subscription - if already subscribed src->message_port_unsub(srcport, pmt::cons(dst->alias_pmt(), dstport)); } void hier_block2_detail::disconnect(basic_block_sptr block) { // Check on singleton list for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { if(*p == block) { d_blocks.erase(p); hier_block2_sptr hblock(cast_to_hier_block2_sptr(block)); if(block && block.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnect: block is hierarchical, clearing parent" << std::endl; hblock->d_detail->d_parent_detail = 0; } return; } } // Otherwise find all edges containing block edge_vector_t edges, tmp = d_fg->edges(); edge_vector_t::iterator p; for(p = tmp.begin(); p != tmp.end(); p++) { if((*p).src().block() == block || (*p).dst().block() == block) { edges.push_back(*p); if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnect: block found in edge " << (*p) << std::endl; } } if(edges.size() == 0) { std::stringstream msg; msg << "cannot disconnect block " << block << ", not found"; throw std::invalid_argument(msg.str()); } for(p = edges.begin(); p != edges.end(); p++) { disconnect((*p).src().block(), (*p).src().port(), (*p).dst().block(), (*p).dst().port()); } } void hier_block2_detail::disconnect(basic_block_sptr src, int src_port, basic_block_sptr dst, int dst_port) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnecting: " << endpoint(src, src_port) << " -> " << endpoint(dst, dst_port) << std::endl; if(src.get() == dst.get()) throw std::invalid_argument("disconnect: source and destination blocks cannot be the same"); hier_block2_sptr src_block(cast_to_hier_block2_sptr(src)); hier_block2_sptr dst_block(cast_to_hier_block2_sptr(dst)); if(src_block && src.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnect: src is hierarchical, clearing parent" << std::endl; src_block->d_detail->d_parent_detail = 0; } if(dst_block && dst.get() != d_owner) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "disconnect: dst is hierarchical, clearing parent" << std::endl; dst_block->d_detail->d_parent_detail = 0; } if(src.get() == d_owner) return disconnect_input(src_port, dst_port, dst); if(dst.get() == d_owner) return disconnect_output(dst_port, src_port, src); // Internal connections d_fg->disconnect(src, src_port, dst, dst_port); } void hier_block2_detail::refresh_io_signature() { int min_inputs = d_owner->input_signature()->min_streams(); int max_inputs = d_owner->input_signature()->max_streams(); int min_outputs = d_owner->output_signature()->min_streams(); int max_outputs = d_owner->output_signature()->max_streams(); if(max_inputs == io_signature::IO_INFINITE || max_outputs == io_signature::IO_INFINITE || (min_inputs != max_inputs) ||(min_outputs != max_outputs) ) { std::stringstream msg; msg << "Hierarchical blocks do not yet support arbitrary or" << " variable numbers of inputs or outputs (" << d_owner->name() << ")"; throw std::runtime_error(msg.str()); } // Check for # input change if ((signed)d_inputs.size() != max_inputs) { d_inputs.resize(max_inputs); } // Check for # output change if ((signed)d_outputs.size() != max_outputs) { d_outputs.resize(max_outputs); d_min_output_buffer.resize(max_outputs, 0); d_max_output_buffer.resize(max_outputs, 0); } } void hier_block2_detail::connect_input(int my_port, int port, basic_block_sptr block) { std::stringstream msg; refresh_io_signature(); if(my_port < 0 || my_port >= (signed)d_inputs.size()) { msg << "input port " << my_port << " out of range for " << block; throw std::invalid_argument(msg.str()); } endpoint_vector_t &endps = d_inputs[my_port]; endpoint endp(block, port); endpoint_viter_t p = std::find(endps.begin(), endps.end(), endp); if(p != endps.end()) { msg << "external input port " << my_port << " already wired to " << endp; throw std::invalid_argument(msg.str()); } endps.push_back(endp); } void hier_block2_detail::connect_output(int my_port, int port, basic_block_sptr block) { std::stringstream msg; refresh_io_signature(); if(my_port < 0 || my_port >= (signed)d_outputs.size()) { msg << "output port " << my_port << " out of range for " << block; throw std::invalid_argument(msg.str()); } if(d_outputs[my_port].block()) { msg << "external output port " << my_port << " already connected from " << d_outputs[my_port]; throw std::invalid_argument(msg.str()); } d_outputs[my_port] = endpoint(block, port); } void hier_block2_detail::disconnect_input(int my_port, int port, basic_block_sptr block) { std::stringstream msg; refresh_io_signature(); if(my_port < 0 || my_port >= (signed)d_inputs.size()) { msg << "input port number " << my_port << " out of range for " << block; throw std::invalid_argument(msg.str()); } endpoint_vector_t &endps = d_inputs[my_port]; endpoint endp(block, port); endpoint_viter_t p = std::find(endps.begin(), endps.end(), endp); if(p == endps.end()) { msg << "external input port " << my_port << " not connected to " << endp; throw std::invalid_argument(msg.str()); } endps.erase(p); } void hier_block2_detail::disconnect_output(int my_port, int port, basic_block_sptr block) { std::stringstream msg; refresh_io_signature(); if(my_port < 0 || my_port >= (signed)d_outputs.size()) { msg << "output port number " << my_port << " out of range for " << block; throw std::invalid_argument(msg.str()); } if(d_outputs[my_port].block() != block) { msg << "block " << block << " not assigned to output " << my_port << ", can't disconnect"; throw std::invalid_argument(msg.str()); } d_outputs[my_port] = endpoint(); } endpoint_vector_t hier_block2_detail::resolve_port(int port, bool is_input) { std::stringstream msg; if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Resolving port " << port << " as an " << (is_input ? "input" : "output") << " of " << d_owner->name() << std::endl; endpoint_vector_t result; if(is_input) { if(port < 0 || port >= (signed)d_inputs.size()) { msg << "resolve_port: hierarchical block '" << d_owner->name() << "': input " << port << " is out of range"; throw std::runtime_error(msg.str()); } if(d_inputs[port].empty()) { msg << "resolve_port: hierarchical block '" << d_owner->name() << "': input " << port << " is not connected internally"; throw std::runtime_error(msg.str()); } endpoint_vector_t &endps = d_inputs[port]; endpoint_viter_t p; for(p = endps.begin(); p != endps.end(); p++) { endpoint_vector_t tmp = resolve_endpoint(*p, true); std::copy(tmp.begin(), tmp.end(), back_inserter(result)); } } else { if(port < 0 || port >= (signed)d_outputs.size()) { msg << "resolve_port: hierarchical block '" << d_owner->name() << "': output " << port << " is out of range"; throw std::runtime_error(msg.str()); } if(d_outputs[port] == endpoint()) { msg << "resolve_port: hierarchical block '" << d_owner->name() << "': output " << port << " is not connected internally"; throw std::runtime_error(msg.str()); } result = resolve_endpoint(d_outputs[port], false); } if(result.empty()) { msg << "resolve_port: hierarchical block '" << d_owner->name() << "': unable to resolve " << (is_input ? "input port " : "output port ") << port; throw std::runtime_error(msg.str()); } return result; } void hier_block2_detail::disconnect_all() { d_fg->clear(); d_blocks.clear(); int max_inputs = d_owner->input_signature()->max_streams(); int max_outputs = d_owner->output_signature()->max_streams(); d_inputs = std::vector<endpoint_vector_t>(max_inputs); d_outputs = endpoint_vector_t(max_outputs); } endpoint_vector_t hier_block2_detail::resolve_endpoint(const endpoint &endp, bool is_input) const { std::stringstream msg; endpoint_vector_t result; // Check if endpoint is a leaf node if(cast_to_block_sptr(endp.block())) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block " << endp.block() << " is a leaf node, returning." << std::endl; result.push_back(endp); return result; } // Check if endpoint is a hierarchical block hier_block2_sptr hier_block2(cast_to_hier_block2_sptr(endp.block())); if(hier_block2) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Resolving endpoint " << endp << " as an " << (is_input ? "input" : "output") << ", recursing" << std::endl; return hier_block2->d_detail->resolve_port(endp.port(), is_input); } msg << "unable to resolve" << (is_input ? " input " : " output ") << "endpoint " << endp; throw std::runtime_error(msg.str()); } void hier_block2_detail::flatten_aux(flat_flowgraph_sptr sfg) const { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << " ** Flattening " << d_owner->name() << " parent: " << d_parent_detail << std::endl; bool is_top_block = (d_parent_detail == NULL); // Add my edges to the flow graph, resolving references to actual endpoints edge_vector_t edges = d_fg->edges(); msg_edge_vector_t msg_edges = d_fg->msg_edges(); edge_viter_t p; msg_edge_viter_t q,u; // Only run setup_rpc if ControlPort config param is enabled. bool ctrlport_on = prefs::singleton()->get_bool("ControlPort", "on", false); int min_buff = 0; int max_buff = 0; // Determine how the buffers should be set bool set_all_min_buff = d_owner->all_min_output_buffer_p(); bool set_all_max_buff = d_owner->all_max_output_buffer_p(); // Get the min and max buffer length if(set_all_min_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Getting (" << (d_owner->alias()).c_str() << ") min buffer" << std::endl; min_buff = d_owner->min_output_buffer(); } if(set_all_max_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Getting (" << (d_owner->alias()).c_str() << ") max buffer" << std::endl; max_buff = d_owner->max_output_buffer(); } // For every block (gr::block and gr::hier_block2), set up the RPC // interface. for(p = edges.begin(); p != edges.end(); p++) { basic_block_sptr b; b = p->src().block(); if(set_all_min_buff){ //sets the min buff for every block within hier_block2 if(min_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(b); if(bb != 0){ if(bb->min_output_buffer(0) != min_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") min_buff (" << min_buff << ")" << std::endl; bb->set_min_output_buffer(min_buff); } } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(b); if(hh != 0){ if(hh->min_output_buffer(0) != min_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") min_buff (" << min_buff << ")" << std::endl; hh->set_min_output_buffer(min_buff); } } } } } if(set_all_max_buff){ //sets the max buff for every block within hier_block2 if(max_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(b); if(bb != 0){ if(bb->max_output_buffer(0) != max_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") max_buff (" << max_buff << ")" << std::endl; bb->set_max_output_buffer(max_buff); } } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(b); if(hh != 0){ if(hh->max_output_buffer(0) != max_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") max_buff (" << max_buff << ")" << std::endl; hh->set_max_output_buffer(max_buff); } } } } } b = p->dst().block(); if(set_all_min_buff){ //sets the min buff for every block within hier_block2 if(min_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(b); if(bb != 0){ if(bb->min_output_buffer(0) != min_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") min_buff (" << min_buff << ")" << std::endl; bb->set_min_output_buffer(min_buff); } } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(b); if(hh != 0){ if(hh->min_output_buffer(0) != min_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") min_buff (" << min_buff << ")" << std::endl; hh->set_min_output_buffer(min_buff); } } } } } if(set_all_max_buff){ //sets the max buff for every block within hier_block2 if(max_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(b); if(bb != 0){ if(bb->max_output_buffer(0) != max_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") max_buff (" << max_buff << ")" << std::endl; bb->set_max_output_buffer(max_buff); } } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(b); if(hh != 0){ if(hh->max_output_buffer(0) != max_buff){ if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") max_buff (" << max_buff << ")" << std::endl; hh->set_max_output_buffer(max_buff); } } } } } } if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Flattening stream connections: " << std::endl; for(p = edges.begin(); p != edges.end(); p++) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Flattening edge " << (*p) << std::endl; endpoint_vector_t src_endps = resolve_endpoint(p->src(), false); endpoint_vector_t dst_endps = resolve_endpoint(p->dst(), true); endpoint_viter_t s, d; for(s = src_endps.begin(); s != src_endps.end(); s++) { for(d = dst_endps.begin(); d != dst_endps.end(); d++) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << (*s) << "->" << (*d) << std::endl; sfg->connect(*s, *d); } } } // loop through flattening hierarchical connections if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Flattening msg connections: " << std::endl; std::vector<std::pair<msg_endpoint, bool> > resolved_endpoints; for(q = msg_edges.begin(); q != msg_edges.end(); q++) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << boost::format(" flattening edge ( %s, %s, %d) -> ( %s, %s, %d)\n") % \ q->src().block() % q->src().port() % q->src().is_hier() % q->dst().block() % \ q->dst().port() % q->dst().is_hier(); if(q->src().is_hier() && q->src().block().get() == d_owner){ // connection into this block .. if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "hier incoming port: " << q->src() << std::endl; sfg->replace_endpoint(q->src(), q->dst(), false); resolved_endpoints.push_back( std::pair<msg_endpoint,bool>( q->src(), false)); } else if(q->dst().is_hier() && q->dst().block().get() == d_owner){ // connection out of this block if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "hier outgoing port: " << q->dst() << std::endl; sfg->replace_endpoint(q->dst(), q->src(), true); resolved_endpoints.push_back( std::pair<msg_endpoint,bool>(q->dst(), true)); } else { // internal connection only if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "internal msg connection: " << q->src() << "-->" << q->dst() << std::endl; sfg->connect( q->src(), q->dst() ); } } for(std::vector<std::pair<msg_endpoint, bool> >::iterator it = resolved_endpoints.begin(); it != resolved_endpoints.end(); it++) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "sfg->clear_endpoint(" << (*it).first << ", " << (*it).second << ") " << std::endl; sfg->clear_endpoint((*it).first, (*it).second); } /* // connect primitive edges in the new fg for(q = msg_edges.begin(); q != msg_edges.end(); q++) { if((!q->src().is_hier()) && (!q->dst().is_hier())) { sfg->connect(q->src(), q->dst()); } else { std::cout << "not connecting hier connection!" << std::endl; } } */ // Construct unique list of blocks used either in edges, inputs, // outputs, or by themselves. I still hate STL. basic_block_vector_t blocks; // unique list of used blocks basic_block_vector_t tmp = d_fg->calc_used_blocks(); // First add the list of singleton blocks std::vector<basic_block_sptr>::const_iterator b; // Because flatten_aux is const for(b = d_blocks.begin(); b != d_blocks.end(); b++) { tmp.push_back(*b); // for every block, attempt to setup RPC if(ctrlport_on) { if(!(*b)->is_rpc_set()) { (*b)->setup_rpc(); (*b)->rpc_set(); } } } // Now add the list of connected input blocks std::stringstream msg; for(unsigned int i = 0; i < d_inputs.size(); i++) { if(d_inputs[i].size() == 0) { msg << "In hierarchical block " << d_owner->name() << ", input " << i << " is not connected internally"; throw std::runtime_error(msg.str()); } for(unsigned int j = 0; j < d_inputs[i].size(); j++) tmp.push_back(d_inputs[i][j].block()); } for(unsigned int i = 0; i < d_outputs.size(); i++) { basic_block_sptr blk = d_outputs[i].block(); if(!blk) { msg << "In hierarchical block " << d_owner->name() << ", output " << i << " is not connected internally"; throw std::runtime_error(msg.str()); } // Set the buffers of only the blocks connected to the hier output if(!set_all_min_buff){ min_buff = d_owner->min_output_buffer(i); if(min_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(blk); if(bb != 0){ int bb_src_port = d_outputs[i].port(); if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") Port (" << bb_src_port << ") min_buff (" << min_buff << ")" << std::endl; bb->set_min_output_buffer(bb_src_port, min_buff); } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(blk); if(hh != 0){ int hh_src_port = d_outputs[i].port(); if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") Port (" << hh_src_port << ") min_buff ("<< min_buff << ")" << std::endl; hh->set_min_output_buffer(hh_src_port, min_buff); } } } } if(!set_all_max_buff){ max_buff = d_owner->max_output_buffer(i); if(max_buff != 0){ block_sptr bb = boost::dynamic_pointer_cast<block>(blk); if(bb != 0){ int bb_src_port = d_outputs[i].port(); if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "Block (" << (bb->alias()).c_str() << ") Port (" << bb_src_port << ") max_buff (" << max_buff << ")" << std::endl; bb->set_max_output_buffer(bb_src_port, max_buff); } else{ hier_block2_sptr hh = boost::dynamic_pointer_cast<hier_block2>(blk); if(hh != 0){ int hh_src_port = d_outputs[i].port(); if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "HBlock (" << (hh->alias()).c_str() << ") Port (" << hh_src_port << ") max_buff (" << max_buff << ")" << std::endl; hh->set_max_output_buffer(hh_src_port, max_buff); } } } } tmp.push_back(blk); } sort(tmp.begin(), tmp.end()); std::insert_iterator<basic_block_vector_t> inserter(blocks, blocks.begin()); unique_copy(tmp.begin(), tmp.end(), inserter); // Recurse hierarchical children for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { hier_block2_sptr hier_block2(cast_to_hier_block2_sptr(*p)); if(hier_block2 && (hier_block2.get() != d_owner)) { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "flatten_aux: recursing into hierarchical block " << hier_block2->alias() << std::endl; hier_block2->d_detail->flatten_aux(sfg); } } // prune any remaining hier connections // if they were not replaced with hier internal connections while in sub-calls // they must remain unconnected and can be deleted... if(is_top_block){ sfg->clear_hier(); } // print all primitive connections at exit if(HIER_BLOCK2_DETAIL_DEBUG && is_top_block){ std::cout << "flatten_aux finished in top_block" << std::endl; sfg->dump(); } } void hier_block2_detail::lock() { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "lock: entered in " << this << std::endl; if(d_parent_detail) d_parent_detail->lock(); else d_owner->lock(); } void hier_block2_detail::unlock() { if(HIER_BLOCK2_DETAIL_DEBUG) std::cout << "unlock: entered in " << this << std::endl; if(d_parent_detail) d_parent_detail->unlock(); else d_owner->unlock(); } void hier_block2_detail::set_processor_affinity(const std::vector<int> &mask) { basic_block_vector_t tmp = d_fg->calc_used_blocks(); for(basic_block_viter_t p = tmp.begin(); p != tmp.end(); p++) { (*p)->set_processor_affinity(mask); } } void hier_block2_detail::unset_processor_affinity() { basic_block_vector_t tmp = d_fg->calc_used_blocks(); for(basic_block_viter_t p = tmp.begin(); p != tmp.end(); p++) { (*p)->unset_processor_affinity(); } } std::vector<int> hier_block2_detail::processor_affinity() { basic_block_vector_t tmp = d_fg->calc_used_blocks(); return tmp[0]->processor_affinity(); } } /* namespace gr */