/* -*- c++ -*- */ /* * Copyright 2007 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gr_flat_flowgraph.h> #include <gr_block_detail.h> #include <gr_io_signature.h> #include <gr_buffer.h> #include <gr_prefs.h> #include <volk/volk.h> #include <iostream> #include <map> #include <boost/format.hpp> #define GR_FLAT_FLOWGRAPH_DEBUG 0 // 32Kbyte buffer size between blocks #define GR_FIXED_BUFFER_SIZE (32*(1L<<10)) static const unsigned int s_fixed_buffer_size = GR_FIXED_BUFFER_SIZE; gr_flat_flowgraph_sptr gr_make_flat_flowgraph() { return gr_flat_flowgraph_sptr(new gr_flat_flowgraph()); } gr_flat_flowgraph::gr_flat_flowgraph() { } gr_flat_flowgraph::~gr_flat_flowgraph() { } void gr_flat_flowgraph::setup_connections() { gr_basic_block_vector_t blocks = calc_used_blocks(); // Assign block details to blocks for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) cast_to_block_sptr(*p)->set_detail(allocate_block_detail(*p)); // Connect inputs to outputs for each block for(gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { connect_block_inputs(*p); gr_block_sptr block = cast_to_block_sptr(*p); block->set_unaligned(0); block->set_is_unaligned(false); } // Connect message ports connetions for(gr_msg_edge_viter_t i = d_msg_edges.begin(); i != d_msg_edges.end(); i++){ if(GR_FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("flat_fg connecting msg primitives: (%s, %s)->(%s, %s)\n") % i->src().block() % i->src().port() % i->dst().block() % i->dst().port(); i->src().block()->message_port_sub( i->src().port(), pmt::cons(i->dst().block()->alias_pmt(), i->dst().port()) ); } } gr_block_detail_sptr gr_flat_flowgraph::allocate_block_detail(gr_basic_block_sptr block) { int ninputs = calc_used_ports(block, true).size(); int noutputs = calc_used_ports(block, false).size(); gr_block_detail_sptr detail = gr_make_block_detail(ninputs, noutputs); gr_block_sptr grblock = cast_to_block_sptr(block); if(!grblock) throw std::runtime_error("allocate_block_detail found non-gr_block"); if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "Creating block detail for " << block << std::endl; for (int i = 0; i < noutputs; i++) { grblock->expand_minmax_buffer(i); gr_buffer_sptr buffer = allocate_buffer(block, i); if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "Allocated buffer for output " << block << ":" << i << std::endl; detail->set_output(i, buffer); // Update the block's max_output_buffer based on what was actually allocated. grblock->set_max_output_buffer(i, buffer->bufsize()); } return detail; } gr_buffer_sptr gr_flat_flowgraph::allocate_buffer(gr_basic_block_sptr block, int port) { gr_block_sptr grblock = cast_to_block_sptr(block); if (!grblock) throw std::runtime_error("allocate_buffer found non-gr_block"); int item_size = block->output_signature()->sizeof_stream_item(port); // *2 because we're now only filling them 1/2 way in order to // increase the available parallelism when using the TPB scheduler. // (We're double buffering, where we used to single buffer) int nitems = s_fixed_buffer_size * 2 / item_size; // Make sure there are at least twice the output_multiple no. of items if (nitems < 2*grblock->output_multiple()) // Note: this means output_multiple() nitems = 2*grblock->output_multiple(); // can't be changed by block dynamically // If any downstream blocks are decimators and/or have a large output_multiple, // ensure we have a buffer at least twice their decimation factor*output_multiple gr_basic_block_vector_t blocks = calc_downstream_blocks(block, port); // limit buffer size if indicated if(grblock->max_output_buffer(port) > 0) { // std::cout << "constraining output items to " << block->max_output_buffer(port) << "\n"; nitems = std::min((long)nitems, (long)grblock->max_output_buffer(port)); nitems -= nitems%grblock->output_multiple(); if( nitems < 1 ) throw std::runtime_error("problems allocating a buffer with the given max output buffer constraint!"); } else if(grblock->min_output_buffer(port) > 0) { nitems = std::max((long)nitems, (long)grblock->min_output_buffer(port)); nitems -= nitems%grblock->output_multiple(); if( nitems < 1 ) throw std::runtime_error("problems allocating a buffer with the given min output buffer constraint!"); } for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { gr_block_sptr dgrblock = cast_to_block_sptr(*p); if (!dgrblock) throw std::runtime_error("allocate_buffer found non-gr_block"); double decimation = (1.0/dgrblock->relative_rate()); int multiple = dgrblock->output_multiple(); int history = dgrblock->history(); nitems = std::max(nitems, static_cast<int>(2*(decimation*multiple+history))); } // std::cout << "gr_make_buffer(" << nitems << ", " << item_size << ", " << grblock << "\n"; return gr_make_buffer(nitems, item_size, grblock); } void gr_flat_flowgraph::connect_block_inputs(gr_basic_block_sptr block) { gr_block_sptr grblock = cast_to_block_sptr(block); if (!grblock) throw std::runtime_error("connect_block_inputs found non-gr_block"); // Get its detail and edges that feed into it gr_block_detail_sptr detail = grblock->detail(); gr_edge_vector_t in_edges = calc_upstream_edges(block); // For each edge that feeds into it for (gr_edge_viter_t e = in_edges.begin(); e != in_edges.end(); e++) { // Set the buffer reader on the destination port to the output // buffer on the source port int dst_port = e->dst().port(); int src_port = e->src().port(); gr_basic_block_sptr src_block = e->src().block(); gr_block_sptr src_grblock = cast_to_block_sptr(src_block); if (!src_grblock) throw std::runtime_error("connect_block_inputs found non-gr_block"); gr_buffer_sptr src_buffer = src_grblock->detail()->output(src_port); if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "Setting input " << dst_port << " from edge " << (*e) << std::endl; detail->set_input(dst_port, gr_buffer_add_reader(src_buffer, grblock->history()-1, grblock)); } } void gr_flat_flowgraph::merge_connections(gr_flat_flowgraph_sptr old_ffg) { // Allocate block details if needed. Only new blocks that aren't pruned out // by flattening will need one; existing blocks still in the new flowgraph will // already have one. for (gr_basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { gr_block_sptr block = cast_to_block_sptr(*p); if (!block->detail()) { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: allocating new detail for block " << (*p) << std::endl; block->set_detail(allocate_block_detail(block)); } else if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: reusing original detail for block " << (*p) << std::endl; } // Calculate the old edges that will be going away, and clear the buffer readers // on the RHS. for (gr_edge_viter_t old_edge = old_ffg->d_edges.begin(); old_edge != old_ffg->d_edges.end(); old_edge++) { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: testing old edge " << (*old_edge) << "..."; gr_edge_viter_t new_edge; for (new_edge = d_edges.begin(); new_edge != d_edges.end(); new_edge++) if (new_edge->src() == old_edge->src() && new_edge->dst() == old_edge->dst()) break; if (new_edge == d_edges.end()) { // not found in new edge list if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "not in new edge list" << std::endl; // zero the buffer reader on RHS of old edge gr_block_sptr block(cast_to_block_sptr(old_edge->dst().block())); int port = old_edge->dst().port(); block->detail()->set_input(port, gr_buffer_reader_sptr()); } else { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "found in new edge list" << std::endl; } } // Now connect inputs to outputs, reusing old buffer readers if they exist for (gr_basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { gr_block_sptr block = cast_to_block_sptr(*p); if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: merging " << (*p) << "..."; if (old_ffg->has_block_p(*p)) { // Block exists in old flow graph if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "used in old flow graph" << std::endl; gr_block_detail_sptr detail = block->detail(); // Iterate through the inputs and see what needs to be done int ninputs = calc_used_ports(block, true).size(); // Might be different now for (int i = 0; i < ninputs; i++) { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "Checking input " << block << ":" << i << "..."; gr_edge edge = calc_upstream_edge(*p, i); // Fish out old buffer reader and see if it matches correct buffer from edge list gr_block_sptr src_block = cast_to_block_sptr(edge.src().block()); gr_block_detail_sptr src_detail = src_block->detail(); gr_buffer_sptr src_buffer = src_detail->output(edge.src().port()); gr_buffer_reader_sptr old_reader; if (i < detail->ninputs()) // Don't exceed what the original detail has old_reader = detail->input(i); // If there's a match, use it if (old_reader && (src_buffer == old_reader->buffer())) { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "matched, reusing" << std::endl; } else { if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "needs a new reader" << std::endl; // Create new buffer reader and assign detail->set_input(i, gr_buffer_add_reader(src_buffer, block->history()-1, block)); } } } else { // Block is new, it just needs buffer readers at this point if (GR_FLAT_FLOWGRAPH_DEBUG) std::cout << "new block" << std::endl; connect_block_inputs(block); // Make sure all buffers are aligned setup_buffer_alignment(block); } // Now deal with the fact that the block details might have changed numbers of // inputs and outputs vs. in the old flowgraph. } } void gr_flat_flowgraph::setup_buffer_alignment(gr_block_sptr block) { const int alignment = volk_get_alignment(); for(int i = 0; i < block->detail()->ninputs(); i++) { void *r = (void*)block->detail()->input(i)->read_pointer(); unsigned long int ri = (unsigned long int)r % alignment; //std::cerr << "reader: " << r << " alignment: " << ri << std::endl; if(ri != 0) { size_t itemsize = block->detail()->input(i)->get_sizeof_item(); block->detail()->input(i)->update_read_pointer(alignment-ri/itemsize); } block->set_unaligned(0); block->set_is_unaligned(false); } for(int i = 0; i < block->detail()->noutputs(); i++) { void *w = (void*)block->detail()->output(i)->write_pointer(); unsigned long int wi = (unsigned long int)w % alignment; //std::cerr << "writer: " << w << " alignment: " << wi << std::endl; if(wi != 0) { size_t itemsize = block->detail()->output(i)->get_sizeof_item(); block->detail()->output(i)->update_write_pointer(alignment-wi/itemsize); } block->set_unaligned(0); block->set_is_unaligned(false); } } std::string gr_flat_flowgraph::edge_list() { std::stringstream s; for(gr_edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++) s << (*e) << std::endl; return s.str(); } void gr_flat_flowgraph::dump() { for (gr_edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++) std::cout << " edge: " << (*e) << std::endl; for (gr_basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { std::cout << " block: " << (*p) << std::endl; gr_block_detail_sptr detail = cast_to_block_sptr(*p)->detail(); std::cout << " detail @" << detail << ":" << std::endl; int ni = detail->ninputs(); int no = detail->noutputs(); for (int i = 0; i < no; i++) { gr_buffer_sptr buffer = detail->output(i); std::cout << " output " << i << ": " << buffer << std::endl; } for (int i = 0; i < ni; i++) { gr_buffer_reader_sptr reader = detail->input(i); std::cout << " reader " << i << ": " << reader << " reading from buffer=" << reader->buffer() << std::endl; } } } gr_block_vector_t gr_flat_flowgraph::make_block_vector(gr_basic_block_vector_t &blocks) { gr_block_vector_t result; for (gr_basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { result.push_back(cast_to_block_sptr(*p)); } return result; } void gr_flat_flowgraph::clear_endpoint(const gr_msg_endpoint &e, bool is_src){ for(size_t i=0; i<d_msg_edges.size(); i++){ if(is_src){ if(d_msg_edges[i].src() == e){ d_msg_edges.erase(d_msg_edges.begin() + i); i--; } } else { if(d_msg_edges[i].dst() == e){ d_msg_edges.erase(d_msg_edges.begin() + i); i--; } } } } void gr_flat_flowgraph::replace_endpoint(const gr_msg_endpoint &e, const gr_msg_endpoint &r, bool is_src){ size_t n_replr(0); if(GR_FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("gr_flat_flowgraph::replace_endpoint( %s, %s, %d )\n") % e.block()% r.block()% is_src; for(size_t i=0; i<d_msg_edges.size(); i++){ if(is_src){ if(d_msg_edges[i].src() == e){ if(GR_FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("gr_flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") % r.block()% d_msg_edges[i].dst().block(); d_msg_edges.push_back( gr_msg_edge(r, d_msg_edges[i].dst() ) ); n_replr++; } } else { if(d_msg_edges[i].dst() == e){ if(GR_FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("gr_flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") % r.block()% d_msg_edges[i].dst().block(); d_msg_edges.push_back( gr_msg_edge(d_msg_edges[i].src(), r ) ); n_replr++; } } } } void gr_flat_flowgraph::enable_pc_rpc() { #ifdef GR_PERFORMANCE_COUNTERS if(gr_prefs::singleton()->get_bool("PerfCounters", "on", false)) { gr_basic_block_viter_t p; for(p = d_blocks.begin(); p != d_blocks.end(); p++) { gr_block_sptr block = cast_to_block_sptr(*p); if(!block->is_pc_rpc_set()) block->setup_pc_rpc(); } } #endif /* GR_PERFORMANCE_COUNTERS */ }