/* -*- c++ -*- */ /* * Copyright 2007,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "flat_flowgraph.h" #include <gnuradio/block_detail.h> #include <gnuradio/buffer.h> #include <gnuradio/prefs.h> #include <volk/volk.h> #include <iostream> #include <map> #include <boost/format.hpp> namespace gr { #define FLAT_FLOWGRAPH_DEBUG 0 // 32Kbyte buffer size between blocks #define GR_FIXED_BUFFER_SIZE (32*(1L<<10)) static const unsigned int s_fixed_buffer_size = GR_FIXED_BUFFER_SIZE; flat_flowgraph_sptr make_flat_flowgraph() { return flat_flowgraph_sptr(new flat_flowgraph()); } flat_flowgraph::flat_flowgraph() { } flat_flowgraph::~flat_flowgraph() { } void flat_flowgraph::setup_connections() { basic_block_vector_t blocks = calc_used_blocks(); // Assign block details to blocks for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) cast_to_block_sptr(*p)->set_detail(allocate_block_detail(*p)); // Connect inputs to outputs for each block for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { connect_block_inputs(*p); block_sptr block = cast_to_block_sptr(*p); block->set_unaligned(0); block->set_is_unaligned(false); } // Connect message ports connetions for(msg_edge_viter_t i = d_msg_edges.begin(); i != d_msg_edges.end(); i++) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("flat_fg connecting msg primitives: (%s, %s)->(%s, %s)\n") % i->src().block() % i->src().port() % i->dst().block() % i->dst().port(); i->src().block()->message_port_sub(i->src().port(), pmt::cons(i->dst().block()->alias_pmt(), i->dst().port())); } } block_detail_sptr flat_flowgraph::allocate_block_detail(basic_block_sptr block) { int ninputs = calc_used_ports(block, true).size(); int noutputs = calc_used_ports(block, false).size(); block_detail_sptr detail = make_block_detail(ninputs, noutputs); block_sptr grblock = cast_to_block_sptr(block); if(!grblock) throw std::runtime_error("allocate_block_detail found non-gr::block"); if(FLAT_FLOWGRAPH_DEBUG) std::cout << "Creating block detail for " << block << std::endl; for(int i = 0; i < noutputs; i++) { grblock->expand_minmax_buffer(i); buffer_sptr buffer = allocate_buffer(block, i); if(FLAT_FLOWGRAPH_DEBUG) std::cout << "Allocated buffer for output " << block << ":" << i << std::endl; detail->set_output(i, buffer); // Update the block's max_output_buffer based on what was actually allocated. grblock->set_max_output_buffer(i, buffer->bufsize()); } return detail; } buffer_sptr flat_flowgraph::allocate_buffer(basic_block_sptr block, int port) { block_sptr grblock = cast_to_block_sptr(block); if(!grblock) throw std::runtime_error("allocate_buffer found non-gr::block"); int item_size = block->output_signature()->sizeof_stream_item(port); // *2 because we're now only filling them 1/2 way in order to // increase the available parallelism when using the TPB scheduler. // (We're double buffering, where we used to single buffer) int nitems = s_fixed_buffer_size * 2 / item_size; // Make sure there are at least twice the output_multiple no. of items if(nitems < 2*grblock->output_multiple()) // Note: this means output_multiple() nitems = 2*grblock->output_multiple(); // can't be changed by block dynamically // If any downstream blocks are decimators and/or have a large output_multiple, // ensure we have a buffer at least twice their decimation factor*output_multiple basic_block_vector_t blocks = calc_downstream_blocks(block, port); // limit buffer size if indicated if(grblock->max_output_buffer(port) > 0) { //std::cout << "constraining output items to " << block->max_output_buffer(port) << "\n"; nitems = std::min((long)nitems, (long)grblock->max_output_buffer(port)); nitems -= nitems%grblock->output_multiple(); if(nitems < 1) throw std::runtime_error("problems allocating a buffer with the given max output buffer constraint!"); } else if(grblock->min_output_buffer(port) > 0) { nitems = std::max((long)nitems, (long)grblock->min_output_buffer(port)); nitems -= nitems%grblock->output_multiple(); if(nitems < 1) throw std::runtime_error("problems allocating a buffer with the given min output buffer constraint!"); } for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { block_sptr dgrblock = cast_to_block_sptr(*p); if(!dgrblock) throw std::runtime_error("allocate_buffer found non-gr::block"); double decimation = (1.0/dgrblock->relative_rate()); int multiple = dgrblock->output_multiple(); int history = dgrblock->history(); nitems = std::max(nitems, static_cast<int>(2*(decimation*multiple+history))); } // std::cout << "make_buffer(" << nitems << ", " << item_size << ", " << grblock << "\n"; // We're going to let this fail once and retry. If that fails, // throw and exit. buffer_sptr b; try { b = make_buffer(nitems, item_size, grblock); } catch(std::bad_alloc&) { b = make_buffer(nitems, item_size, grblock); } return b; } void flat_flowgraph::connect_block_inputs(basic_block_sptr block) { block_sptr grblock = cast_to_block_sptr(block); if (!grblock) throw std::runtime_error("connect_block_inputs found non-gr::block"); // Get its detail and edges that feed into it block_detail_sptr detail = grblock->detail(); edge_vector_t in_edges = calc_upstream_edges(block); // For each edge that feeds into it for(edge_viter_t e = in_edges.begin(); e != in_edges.end(); e++) { // Set the buffer reader on the destination port to the output // buffer on the source port int dst_port = e->dst().port(); int src_port = e->src().port(); basic_block_sptr src_block = e->src().block(); block_sptr src_grblock = cast_to_block_sptr(src_block); if(!src_grblock) throw std::runtime_error("connect_block_inputs found non-gr::block"); buffer_sptr src_buffer = src_grblock->detail()->output(src_port); if(FLAT_FLOWGRAPH_DEBUG) std::cout << "Setting input " << dst_port << " from edge " << (*e) << std::endl; detail->set_input(dst_port, buffer_add_reader(src_buffer, grblock->history()-1, grblock)); } } void flat_flowgraph::merge_connections(flat_flowgraph_sptr old_ffg) { // Allocate block details if needed. Only new blocks that aren't pruned out // by flattening will need one; existing blocks still in the new flowgraph will // already have one. for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { block_sptr block = cast_to_block_sptr(*p); if(!block->detail()) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: allocating new detail for block " << (*p) << std::endl; block->set_detail(allocate_block_detail(block)); } else if(FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: reusing original detail for block " << (*p) << std::endl; } // Calculate the old edges that will be going away, and clear the // buffer readers on the RHS. for(edge_viter_t old_edge = old_ffg->d_edges.begin(); old_edge != old_ffg->d_edges.end(); old_edge++) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: testing old edge " << (*old_edge) << "..."; edge_viter_t new_edge; for(new_edge = d_edges.begin(); new_edge != d_edges.end(); new_edge++) if(new_edge->src() == old_edge->src() && new_edge->dst() == old_edge->dst()) break; if(new_edge == d_edges.end()) { // not found in new edge list if(FLAT_FLOWGRAPH_DEBUG) std::cout << "not in new edge list" << std::endl; // zero the buffer reader on RHS of old edge block_sptr block(cast_to_block_sptr(old_edge->dst().block())); int port = old_edge->dst().port(); block->detail()->set_input(port, buffer_reader_sptr()); } else { if (FLAT_FLOWGRAPH_DEBUG) std::cout << "found in new edge list" << std::endl; } } // Now connect inputs to outputs, reusing old buffer readers if they exist for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { block_sptr block = cast_to_block_sptr(*p); if(FLAT_FLOWGRAPH_DEBUG) std::cout << "merge: merging " << (*p) << "..."; if(old_ffg->has_block_p(*p)) { // Block exists in old flow graph if(FLAT_FLOWGRAPH_DEBUG) std::cout << "used in old flow graph" << std::endl; block_detail_sptr detail = block->detail(); // Iterate through the inputs and see what needs to be done int ninputs = calc_used_ports(block, true).size(); // Might be different now for(int i = 0; i < ninputs; i++) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << "Checking input " << block << ":" << i << "..."; edge edge = calc_upstream_edge(*p, i); // Fish out old buffer reader and see if it matches correct buffer from edge list block_sptr src_block = cast_to_block_sptr(edge.src().block()); block_detail_sptr src_detail = src_block->detail(); buffer_sptr src_buffer = src_detail->output(edge.src().port()); buffer_reader_sptr old_reader; if(i < detail->ninputs()) // Don't exceed what the original detail has old_reader = detail->input(i); // If there's a match, use it if(old_reader && (src_buffer == old_reader->buffer())) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << "matched, reusing" << std::endl; } else { if(FLAT_FLOWGRAPH_DEBUG) std::cout << "needs a new reader" << std::endl; // Create new buffer reader and assign detail->set_input(i, buffer_add_reader(src_buffer, block->history()-1, block)); } } } else { // Block is new, it just needs buffer readers at this point if(FLAT_FLOWGRAPH_DEBUG) std::cout << "new block" << std::endl; connect_block_inputs(block); // Make sure all buffers are aligned setup_buffer_alignment(block); } // Now deal with the fact that the block details might have // changed numbers of inputs and outputs vs. in the old // flowgraph. } } void flat_flowgraph::setup_buffer_alignment(block_sptr block) { const int alignment = volk_get_alignment(); for(int i = 0; i < block->detail()->ninputs(); i++) { void *r = (void*)block->detail()->input(i)->read_pointer(); unsigned long int ri = (unsigned long int)r % alignment; //std::cerr << "reader: " << r << " alignment: " << ri << std::endl; if(ri != 0) { size_t itemsize = block->detail()->input(i)->get_sizeof_item(); block->detail()->input(i)->update_read_pointer(alignment-ri/itemsize); } block->set_unaligned(0); block->set_is_unaligned(false); } for(int i = 0; i < block->detail()->noutputs(); i++) { void *w = (void*)block->detail()->output(i)->write_pointer(); unsigned long int wi = (unsigned long int)w % alignment; //std::cerr << "writer: " << w << " alignment: " << wi << std::endl; if(wi != 0) { size_t itemsize = block->detail()->output(i)->get_sizeof_item(); block->detail()->output(i)->update_write_pointer(alignment-wi/itemsize); } block->set_unaligned(0); block->set_is_unaligned(false); } } std::string flat_flowgraph::edge_list() { std::stringstream s; for(edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++) s << (*e) << std::endl; return s.str(); } std::string flat_flowgraph::msg_edge_list() { std::stringstream s; for(msg_edge_viter_t e = d_msg_edges.begin(); e != d_msg_edges.end(); e++) s << (*e) << std::endl; return s.str(); } void flat_flowgraph::dump() { for(edge_viter_t e = d_edges.begin(); e != d_edges.end(); e++) std::cout << " edge: " << (*e) << std::endl; for(basic_block_viter_t p = d_blocks.begin(); p != d_blocks.end(); p++) { std::cout << " block: " << (*p) << std::endl; block_detail_sptr detail = cast_to_block_sptr(*p)->detail(); std::cout << " detail @" << detail << ":" << std::endl; int ni = detail->ninputs(); int no = detail->noutputs(); for(int i = 0; i < no; i++) { buffer_sptr buffer = detail->output(i); std::cout << " output " << i << ": " << buffer << std::endl; } for(int i = 0; i < ni; i++) { buffer_reader_sptr reader = detail->input(i); std::cout << " reader " << i << ": " << reader << " reading from buffer=" << reader->buffer() << std::endl; } } } block_vector_t flat_flowgraph::make_block_vector(basic_block_vector_t &blocks) { block_vector_t result; for(basic_block_viter_t p = blocks.begin(); p != blocks.end(); p++) { result.push_back(cast_to_block_sptr(*p)); } return result; } void flat_flowgraph::clear_endpoint(const msg_endpoint &e, bool is_src) { for(size_t i=0; i<d_msg_edges.size(); i++) { if(is_src) { if(d_msg_edges[i].src() == e) { d_msg_edges.erase(d_msg_edges.begin() + i); i--; } } else { if(d_msg_edges[i].dst() == e) { d_msg_edges.erase(d_msg_edges.begin() + i); i--; } } } } void flat_flowgraph::replace_endpoint(const msg_endpoint &e, const msg_endpoint &r, bool is_src) { size_t n_replr(0); if(FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("flat_flowgraph::replace_endpoint( %s, %s, %d )\n") % e.block()% r.block()% is_src; for(size_t i=0; i<d_msg_edges.size(); i++) { if(is_src) { if(d_msg_edges[i].src() == e) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") \ % r.block()% d_msg_edges[i].dst().block(); d_msg_edges.push_back( msg_edge(r, d_msg_edges[i].dst() ) ); n_replr++; } } else { if(d_msg_edges[i].dst() == e) { if(FLAT_FLOWGRAPH_DEBUG) std::cout << boost::format("flat_flowgraph::replace_endpoint() flattening to ( %s, %s )\n") \ % r.block()% d_msg_edges[i].dst().block(); d_msg_edges.push_back( msg_edge(d_msg_edges[i].src(), r ) ); n_replr++; } } } } void flat_flowgraph::enable_pc_rpc() { #ifdef GR_PERFORMANCE_COUNTERS if(prefs::singleton()->get_bool("PerfCounters", "on", false)) { basic_block_viter_t p; for(p = d_blocks.begin(); p != d_blocks.end(); p++) { block_sptr block = cast_to_block_sptr(*p); if(!block->is_pc_rpc_set()) block->setup_pc_rpc(); } } #endif /* GR_PERFORMANCE_COUNTERS */ } } /* namespace gr */