/* -*- c++ -*- */
/*
 * Copyright 2004,2009,2010,2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/buffer.h>
#include <gnuradio/math.h>
#include "vmcircbuf.h"
#include <stdexcept>
#include <iostream>
#include <assert.h>
#include <algorithm>
#include <boost/math/common_factor_rt.hpp>

namespace gr {

  static long s_buffer_count = 0;		// counts for debugging storage mgmt
  static long s_buffer_reader_count = 0;

  /* ----------------------------------------------------------------------------
  			Notes on storage management
  
   Pretty much all the fundamental classes are now using the
   shared_ptr stuff for automatic reference counting. To ensure that
   no mistakes are made, we make the constructors for classes private,
   and then provide a free factory function that returns a smart
   pointer to the desired class.

   gr::buffer and gr::buffer_reader are no exceptions.  However, they
   both want pointers to each other, and unless we do something, we'll
   never delete any of them because of the circular structure.
   They'll always have a reference count of at least one.  We could
   use boost::weak_ptr's from gr::buffer to gr::buffer_reader but that
   introduces it's own problems.  (gr::buffer_reader's destructor needs
   to call gr::buffer::drop_reader, but has no easy way to get a
   shared_ptr to itself.)

   Instead, we solve this problem by having gr::buffer hold a raw
   pointer to gr::buffer_reader in its d_reader vector.
   gr::buffer_reader's destructor calls gr::buffer::drop_reader, so
   we're never left with an dangling pointer.  gr::buffer_reader still
   has a shared_ptr to the buffer ensuring that the buffer doesn't go
   away under it.  However, when the reference count of a
   gr::buffer_reader goes to zero, we can successfully reclaim it.
   ---------------------------------------------------------------------------- */

  /*
   * Compute the minimum number of buffer items that work (i.e.,
   * address space wrap-around works).  To work is to satisfy this
   * contraint for integer buffer_size and k:
   *
   *     type_size * nitems == k * page_size
   */
  static long
  minimum_buffer_items(long type_size, long page_size)
  {
    return page_size / boost::math::gcd (type_size, page_size);
  }


  buffer::buffer(int nitems, size_t sizeof_item, block_sptr link) 
    : d_base(0), d_bufsize(0), d_vmcircbuf(0),
      d_sizeof_item(sizeof_item), d_link(link),
      d_write_index(0), d_abs_write_offset(0), d_done(false),
      d_last_min_items_read(0)
  {
    if(!allocate_buffer (nitems, sizeof_item))
      throw std::bad_alloc ();

    s_buffer_count++;
  }

  buffer_sptr
  make_buffer(int nitems, size_t sizeof_item, block_sptr link)
  {
    return buffer_sptr(new buffer(nitems, sizeof_item, link));
  }

  buffer::~buffer()
  {
    delete d_vmcircbuf;
    assert(d_readers.size() == 0);
    s_buffer_count--;
  }

  /*!
   * sets d_vmcircbuf, d_base, d_bufsize.
   * returns true iff successful.
   */
  bool
  buffer::allocate_buffer(int nitems, size_t sizeof_item)
  {
    int orig_nitems = nitems;

    // Any buffersize we come up with must be a multiple of min_nitems.
    int granularity = gr::vmcircbuf_sysconfig::granularity();
    int min_nitems =  minimum_buffer_items(sizeof_item, granularity);

    // Round-up nitems to a multiple of min_nitems.
    if(nitems % min_nitems != 0)
      nitems = ((nitems / min_nitems) + 1) * min_nitems;

    // If we rounded-up a whole bunch, give the user a heads up.
    // This only happens if sizeof_item is not a power of two.

    if(nitems > 2 * orig_nitems && nitems * (int) sizeof_item > granularity){
      std::cerr << "gr::buffer::allocate_buffer: warning: tried to allocate\n"
                << "   " << orig_nitems << " items of size "
                << sizeof_item << ". Due to alignment requirements\n"
                << "   " << nitems << " were allocated.  If this isn't OK, consider padding\n"
                << "   your structure to a power-of-two bytes.\n"
                << "   On this platform, our allocation granularity is " << granularity << " bytes.\n";
    }

    d_bufsize = nitems;
    d_vmcircbuf = gr::vmcircbuf_sysconfig::make(d_bufsize * d_sizeof_item);
    if(d_vmcircbuf == 0){
      std::cerr << "gr::buffer::allocate_buffer: failed to allocate buffer of size "
                << d_bufsize * d_sizeof_item / 1024 << " KB\n";
      return false;
    }

    d_base = (char*)d_vmcircbuf->pointer_to_first_copy();
    return true;
  }

  int
  buffer::space_available()
  {
    if(d_readers.empty())
      return d_bufsize - 1;	// See comment below

    else {
      // Find out the maximum amount of data available to our readers

      int most_data = d_readers[0]->items_available();
      uint64_t min_items_read = d_readers[0]->nitems_read();
      for(size_t i = 1; i < d_readers.size (); i++) {
        most_data = std::max(most_data, d_readers[i]->items_available());
        min_items_read = std::min(min_items_read, d_readers[i]->nitems_read());
      }

      if(min_items_read != d_last_min_items_read) {
        prune_tags(d_last_min_items_read);
        d_last_min_items_read = min_items_read;
      }

      // The -1 ensures that the case d_write_index == d_read_index is
      // unambiguous.  It indicates that there is no data for the reader
      return d_bufsize - most_data - 1;
    }
  }

  void *
  buffer::write_pointer()
  {
    return &d_base[d_write_index * d_sizeof_item];
  }

  void
  buffer::update_write_pointer(int nitems)
  {
    gr::thread::scoped_lock guard(*mutex());
    d_write_index = index_add(d_write_index, nitems);
    d_abs_write_offset += nitems;
  }

  void
  buffer::set_done(bool done)
  {
    gr::thread::scoped_lock guard(*mutex());
    d_done = done;
  }

  buffer_reader_sptr
  buffer_add_reader(buffer_sptr buf, int nzero_preload, block_sptr link)
  {
    if(nzero_preload < 0)
      throw std::invalid_argument("buffer_add_reader: nzero_preload must be >= 0");

    buffer_reader_sptr r(new buffer_reader(buf,
                                           buf->index_sub(buf->d_write_index,
                                                          nzero_preload),
                                           link));
    buf->d_readers.push_back(r.get ());

    return r;
  }

  void
  buffer::drop_reader(buffer_reader *reader)
  {
    std::vector<buffer_reader *>::iterator result =
      std::find(d_readers.begin(), d_readers.end(), reader);

    if(result == d_readers.end())
      throw std::invalid_argument("buffer::drop_reader");    // we didn't find it...

    d_readers.erase(result);
  }

  void
  buffer::add_item_tag(const tag_t &tag)
  {
    gr::thread::scoped_lock guard(*mutex());
    d_item_tags.push_back(tag);
  }

  void
  buffer::remove_item_tag(const tag_t &tag, long id)
  {
    gr::thread::scoped_lock guard(*mutex());
    for(std::deque<tag_t>::iterator it = d_item_tags.begin(); it != d_item_tags.end(); ++it) {
      if(*it == tag) {
	(*it).marked_deleted.push_back(id);
      }
    }
  }

  void
  buffer::prune_tags(uint64_t max_time)
  {
    /* NOTE: this function _should_ lock the mutex before editing
       d_item_tags. In practice, this function is only called at
       runtime by min_available_space in block_executor.cc, which
       locks the mutex itself.

       If this function is used elsewhere, remember to lock the
       buffer's mutex al la the scoped_lock line below.
    */
    //gr::thread::scoped_lock guard(*mutex());
    std::deque<tag_t>::iterator itr = d_item_tags.begin();

    uint64_t item_time;

    // Since tags are not guarenteed to be in any particular order, we
    // need to erase here instead of pop_front. An erase in the middle
    // invalidates all iterators; so this resets the iterator to find
    // more. Mostly, we wil be erasing from the front and
    // therefore lose little time this way.
    while(itr != d_item_tags.end()) {
      item_time = (*itr).offset;
      if(item_time < max_time) {
        d_item_tags.erase(itr);
        itr = d_item_tags.begin();
      }
      else
        itr++;
    }
  }

  long
  buffer_ncurrently_allocated()
  {
    return s_buffer_count;
  }

  // ----------------------------------------------------------------------------

  buffer_reader::buffer_reader(buffer_sptr buffer, unsigned int read_index,
                               block_sptr link)
    : d_buffer(buffer), d_read_index(read_index), d_abs_read_offset(0), d_link(link)
  {
    s_buffer_reader_count++;
  }

  buffer_reader::~buffer_reader()
  {
    d_buffer->drop_reader(this);
    s_buffer_reader_count--;
  }

  int
  buffer_reader::items_available() const
  {
    return d_buffer->index_sub(d_buffer->d_write_index, d_read_index);
  }

  const void *
  buffer_reader::read_pointer()
  {
    return &d_buffer->d_base[d_read_index * d_buffer->d_sizeof_item];
  }

  void
  buffer_reader::update_read_pointer(int nitems)
  {
    gr::thread::scoped_lock guard(*mutex());
    d_read_index = d_buffer->index_add (d_read_index, nitems);
    d_abs_read_offset += nitems;
  }

  void
  buffer_reader::get_tags_in_range(std::vector<tag_t> &v,
                                   uint64_t abs_start,
                                   uint64_t abs_end,
				   long id)
  {
    gr::thread::scoped_lock guard(*mutex());

    v.resize(0);
    std::deque<tag_t>::iterator itr = d_buffer->get_tags_begin();

    uint64_t item_time;
    while(itr != d_buffer->get_tags_end()) {
      item_time = (*itr).offset;

      if((item_time >= abs_start) && (item_time < abs_end)) {
	std::vector<long>::iterator id_itr;
	id_itr = std::find(itr->marked_deleted.begin(), itr->marked_deleted.end(), id);
	if (id_itr == itr->marked_deleted.end()) { // If id is not in the vector of marked blocks
	  v.push_back(*itr);
	  v.back().marked_deleted.clear();
	}
      }
      
      itr++;
    }
  }

  long
  buffer_reader_ncurrently_allocated()
  {
    return s_buffer_reader_count;
  }

} /* namespace gr */