/* -*- c++ -*- */ /* * Copyright 2004,2009,2010,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gnuradio/block.h> #include <gnuradio/block_detail.h> #include <gnuradio/block_registry.h> #include <gnuradio/buffer.h> #include <gnuradio/logger.h> #include <gnuradio/prefs.h> #include <boost/format.hpp> #include <iostream> #include <stdexcept> namespace gr { // Moved from flat_flowgraph.cc // 32Kbyte buffer size between blocks #define GR_FIXED_BUFFER_SIZE (32 * (1L << 10)) static const unsigned int s_fixed_buffer_size = GR_FIXED_BUFFER_SIZE; block::block(const std::string& name, io_signature::sptr input_signature, io_signature::sptr output_signature) : basic_block(name, input_signature, output_signature), d_output_multiple(1), d_output_multiple_set(false), d_unaligned(0), d_is_unaligned(false), d_relative_rate(1.0), d_mp_relative_rate(1.0), d_history(1), d_attr_delay(0), d_fixed_rate(false), d_max_noutput_items_set(false), d_max_noutput_items(0), d_min_noutput_items(0), d_tag_propagation_policy(TPP_ALL_TO_ALL), d_priority(-1), d_pc_rpc_set(false), d_update_rate(false), d_max_output_buffer(std::max(output_signature->max_streams(), 1), -1), d_min_output_buffer(std::max(output_signature->max_streams(), 1), -1), d_pmt_done(pmt::intern("done")), d_system_port(pmt::intern("system")) { global_block_registry.register_primitive(d_symbol_name, this); message_port_register_in(d_system_port); set_msg_handler(d_system_port, [this](pmt::pmt_t msg) { this->system_handler(msg); }); } block::~block() { global_block_registry.unregister_primitive(symbol_name()); } unsigned block::history() const { return d_history; } void block::set_history(unsigned history) { d_history = history; } void block::declare_sample_delay(unsigned delay) { d_attr_delay = delay; if (d_detail) { unsigned int nins = static_cast<unsigned int>(d_detail->ninputs()); for (unsigned int n = 0; n < nins; n++) { d_detail->input(n)->declare_sample_delay(d_attr_delay); } } } void block::declare_sample_delay(int which, unsigned delay) { d_attr_delay = delay; if (d_detail) { d_detail->input(which)->declare_sample_delay(d_attr_delay); } } unsigned block::sample_delay(int which) const { return d_attr_delay; } // stub implementation: 1:1 void block::forecast(int noutput_items, gr_vector_int& ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for (unsigned i = 0; i < ninputs; i++) ninput_items_required[i] = noutput_items + history() - 1; } // default implementation bool block::start() { return true; } bool block::stop() { return true; } void block::set_output_multiple(int multiple) { if (multiple < 1) throw std::invalid_argument("block::set_output_multiple"); d_output_multiple_set = true; d_output_multiple = multiple; } void block::set_alignment(int multiple) { if (multiple < 1) throw std::invalid_argument("block::set_alignment_multiple"); d_output_multiple = multiple; } void block::set_unaligned(int na) { // unaligned value must be less than 0 and it doesn't make sense // that it's larger than the alignment value. if ((na < 0) || (na > d_output_multiple)) throw std::invalid_argument("block::set_unaligned"); d_unaligned = na; } void block::set_is_unaligned(bool u) { d_is_unaligned = u; } void block::set_relative_rate(double relative_rate) { if (relative_rate <= 0.0) throw std::invalid_argument( "block::set_relative_rate: relative rate must be > 0.0"); d_relative_rate = relative_rate; d_mp_relative_rate = mpq_class(relative_rate); } void block::set_inverse_relative_rate(double inverse_relative_rate) { if (inverse_relative_rate <= 0.0) throw std::invalid_argument( "block::set_inverse_relative_rate: inverse relative rate must be > 0.0"); mpq_class inv_rr_q(inverse_relative_rate); set_relative_rate((uint64_t)inv_rr_q.get_den().get_ui(), (uint64_t)inv_rr_q.get_num().get_ui()); } void block::set_relative_rate(uint64_t interpolation, uint64_t decimation) { mpz_class interp, decim; if (interpolation < 1) throw std::invalid_argument( "block::set_relative_rate: interpolation rate cannot be 0"); if (decimation < 1) throw std::invalid_argument( "block::set_relative_rate: decimation rate cannot be 0"); mpz_import(interp.get_mpz_t(), 1, 1, sizeof(interpolation), 0, 0, &interpolation); mpz_import(decim.get_mpz_t(), 1, 1, sizeof(decimation), 0, 0, &decimation); d_mp_relative_rate = mpq_class(interp, decim); d_mp_relative_rate.canonicalize(); d_relative_rate = d_mp_relative_rate.get_d(); } void block::consume(int which_input, int how_many_items) { d_detail->consume(which_input, how_many_items); } void block::consume_each(int how_many_items) { d_detail->consume_each(how_many_items); } void block::produce(int which_output, int how_many_items) { d_detail->produce(which_output, how_many_items); } int block::fixed_rate_ninput_to_noutput(int ninput) { throw std::runtime_error("Unimplemented"); } int block::fixed_rate_noutput_to_ninput(int noutput) { throw std::runtime_error("Unimplemented"); } uint64_t block::nitems_read(unsigned int which_input) { if (d_detail) { return d_detail->nitems_read(which_input); } else { // throw std::runtime_error("No block_detail associated with block yet"); return 0; } } uint64_t block::nitems_written(unsigned int which_output) { if (d_detail) { return d_detail->nitems_written(which_output); } else { // throw std::runtime_error("No block_detail associated with block yet"); return 0; } } void block::add_item_tag(unsigned int which_output, const tag_t& tag) { d_detail->add_item_tag(which_output, tag); } void block::remove_item_tag(unsigned int which_input, const tag_t& tag) { d_detail->remove_item_tag(which_input, tag, unique_id()); } void block::get_tags_in_range(std::vector<tag_t>& v, unsigned int which_input, uint64_t start, uint64_t end) { d_detail->get_tags_in_range(v, which_input, start, end, unique_id()); } void block::get_tags_in_range(std::vector<tag_t>& v, unsigned int which_input, uint64_t start, uint64_t end, const pmt::pmt_t& key) { d_detail->get_tags_in_range(v, which_input, start, end, key, unique_id()); } void block::get_tags_in_window(std::vector<tag_t>& v, unsigned int which_input, uint64_t start, uint64_t end) { d_detail->get_tags_in_range(v, which_input, nitems_read(which_input) + start, nitems_read(which_input) + end, unique_id()); } void block::get_tags_in_window(std::vector<tag_t>& v, unsigned int which_input, uint64_t start, uint64_t end, const pmt::pmt_t& key) { d_detail->get_tags_in_range(v, which_input, nitems_read(which_input) + start, nitems_read(which_input) + end, key, unique_id()); } block::tag_propagation_policy_t block::tag_propagation_policy() { return d_tag_propagation_policy; } void block::set_tag_propagation_policy(tag_propagation_policy_t p) { d_tag_propagation_policy = p; } int block::max_noutput_items() { return d_max_noutput_items; } void block::set_max_noutput_items(int m) { if (m <= 0) throw std::runtime_error("block::set_max_noutput_items: value for " "max_noutput_items must be greater than 0."); d_max_noutput_items = m; d_max_noutput_items_set = true; } void block::unset_max_noutput_items() { d_max_noutput_items_set = false; } bool block::is_set_max_noutput_items() { return d_max_noutput_items_set; } void block::set_processor_affinity(const std::vector<int>& mask) { d_affinity = mask; if (d_detail) { d_detail->set_processor_affinity(d_affinity); } } void block::unset_processor_affinity() { d_affinity.clear(); if (d_detail) { d_detail->unset_processor_affinity(); } } int block::active_thread_priority() { if (d_detail) { return d_detail->thread_priority(); } return -1; } int block::thread_priority() { return d_priority; } int block::set_thread_priority(int priority) { d_priority = priority; if (d_detail) { return d_detail->set_thread_priority(priority); } return d_priority; } void block::expand_minmax_buffer(int port) { if ((size_t)port >= d_max_output_buffer.size()) set_max_output_buffer(port, -1); if ((size_t)port >= d_min_output_buffer.size()) set_min_output_buffer(port, -1); } long block::max_output_buffer(size_t i) { if (i >= d_max_output_buffer.size()) throw std::invalid_argument("basic_block::max_output_buffer: port out of range."); return d_max_output_buffer[i]; } void block::set_max_output_buffer(long max_output_buffer) { for (int i = 0; i < output_signature()->max_streams(); i++) { set_max_output_buffer(i, max_output_buffer); } } void block::set_max_output_buffer(int port, long max_output_buffer) { if ((size_t)port >= d_max_output_buffer.size()) d_max_output_buffer.push_back(max_output_buffer); else d_max_output_buffer[port] = max_output_buffer; } long block::min_output_buffer(size_t i) { if (i >= d_min_output_buffer.size()) throw std::invalid_argument("basic_block::min_output_buffer: port out of range."); return d_min_output_buffer[i]; } void block::set_min_output_buffer(long min_output_buffer) { GR_LOG_INFO(d_logger, boost::format("set_min_output_buffer on block %s to %d") % unique_id() % min_output_buffer); for (int i = 0; i < output_signature()->max_streams(); i++) { set_min_output_buffer(i, min_output_buffer); } } void block::set_min_output_buffer(int port, long min_output_buffer) { if ((size_t)port >= d_min_output_buffer.size()) d_min_output_buffer.push_back(min_output_buffer); else d_min_output_buffer[port] = min_output_buffer; } void block::allocate_detail(int ninputs, int noutputs, const std::vector<int>& downstream_max_nitems_vec, const std::vector<uint64_t>& downstream_lcm_nitems_vec, const std::vector<uint32_t>& downstream_max_out_mult_vec) { block_detail_sptr detail = make_block_detail(ninputs, noutputs); GR_LOG_DEBUG(d_debug_logger, "Creating block detail for " + identifier()); for (int i = 0; i < noutputs; i++) { expand_minmax_buffer(i); buffer_sptr buffer = allocate_buffer(i, downstream_max_nitems_vec[i], downstream_lcm_nitems_vec[i], downstream_max_out_mult_vec[i]); GR_LOG_DEBUG(d_debug_logger, "Allocated buffer for output " + identifier() + " " + std::to_string(i)); detail->set_output(i, buffer); // Update the block's max_output_buffer based on what was actually allocated. if ((max_output_buffer(i) != buffer->bufsize()) && (max_output_buffer(i) != -1)) GR_LOG_WARN(d_logger, boost::format("Block (%1%) max output buffer set to %2%" " instead of requested %3%") % alias() % buffer->bufsize() % max_output_buffer(i)); set_max_output_buffer(i, buffer->bufsize()); } // Store the block_detail that was created above set_detail(detail); } buffer_sptr block::replace_buffer(size_t src_port, size_t dst_port, block_sptr block_owner) { block_detail_sptr detail_ = detail(); buffer_sptr orig_buffer = detail_->output(src_port); buffer_type buftype = block_owner->output_signature()->stream_buffer_type(dst_port); // Make a new buffer but this time use the passed in block as the owner buffer_sptr new_buffer = buftype.make_buffer(orig_buffer->bufsize(), orig_buffer->get_sizeof_item(), orig_buffer->get_downstream_lcm_nitems(), orig_buffer->get_max_reader_output_multiple(), shared_from_base<block>(), block_owner); detail_->set_output(src_port, new_buffer); return new_buffer; } bool block::update_rate() const { return d_update_rate; } void block::enable_update_rate(bool en) { d_update_rate = en; } buffer_sptr block::allocate_buffer(size_t port, int downstream_max_nitems, uint64_t downstream_lcm_nitems, uint32_t downstream_max_out_mult) { int item_size = output_signature()->sizeof_stream_item(port); // *2 because we're now only filling them 1/2 way in order to // increase the available parallelism when using the TPB scheduler. // (We're double buffering, where we used to single buffer) int nitems = s_fixed_buffer_size * 2 / item_size; // Make sure there are at least twice the output_multiple no. of items if (nitems < 2 * output_multiple()) // Note: this means output_multiple() nitems = 2 * output_multiple(); // can't be changed by block dynamically // Limit buffer size if indicated if (max_output_buffer(port) > 0) { // std::cout << "constraining output items to " << block->max_output_buffer(port) // << "\n"; nitems = std::min((long)nitems, (long)max_output_buffer(port)); nitems -= nitems % output_multiple(); if (nitems < 1) throw std::runtime_error("problems allocating a buffer with the given max " "output buffer constraint!"); } else if (min_output_buffer(port) > 0) { nitems = std::max((long)nitems, (long)min_output_buffer(port)); nitems -= nitems % output_multiple(); if (nitems < 1) throw std::runtime_error("problems allocating a buffer with the given min " "output buffer constraint!"); } // If any downstream blocks are decimators and/or have a large output_multiple, // ensure we have a buffer at least twice their decimation factor*output_multiple nitems = std::max(nitems, downstream_max_nitems); // We're going to let this fail once and retry. If that fails, throw and exit. buffer_sptr buf; #ifdef BUFFER_DEBUG GR_LOG_DEBUG(d_logger, "Block: " + name() + " allocated buffer for output " + identifier()); #endif // Grab the buffer type associated with the output port and use it to // create the specified type of buffer buffer_type buftype = output_signature()->stream_buffer_type(port); try { #ifdef BUFFER_DEBUG std::ostringstream msg; msg << "downstream_max_nitems: " << downstream_max_nitems << " -- downstream_lcm_nitems: " << downstream_lcm_nitems << " -- output_multiple(): " << output_multiple() << " -- out_mult_set: " << output_multiple_set() << " -- nitems: " << nitems << " -- history: " << history() << " -- relative_rate: " << relative_rate(); if (relative_rate() != 1.0) { msg << " (" << relative_rate_i() << " / " << relative_rate_d() << ")"; } msg << " -- fixed_rate: " << fixed_rate(); if (fixed_rate()) { int num_inputs = fixed_rate_noutput_to_ninput(1) - (history() - 1); msg << " (" << num_inputs << " -> " << fixed_rate_ninput_to_noutput(num_inputs + (history() - 1)) << ")"; } GR_LOG_DEBUG(d_logger, msg.str()); #endif buf = buftype.make_buffer(nitems, item_size, downstream_lcm_nitems, downstream_max_out_mult, shared_from_base<block>(), shared_from_base<block>()); } catch (std::bad_alloc&) { buf = buftype.make_buffer(nitems, item_size, downstream_lcm_nitems, downstream_max_out_mult, shared_from_base<block>(), shared_from_base<block>()); } // Set the max noutput items size here to make sure it's always // set in the block and available in the start() method. // But don't overwrite if the user has set this externally. if (!is_set_max_noutput_items()) set_max_noutput_items(nitems); return buf; } float block::pc_noutput_items() { if (d_detail) { return d_detail->pc_noutput_items(); } else { return 0; } } float block::pc_noutput_items_avg() { if (d_detail) { return d_detail->pc_noutput_items_avg(); } else { return 0; } } float block::pc_noutput_items_var() { if (d_detail) { return d_detail->pc_noutput_items_var(); } else { return 0; } } float block::pc_nproduced() { if (d_detail) { return d_detail->pc_nproduced(); } else { return 0; } } float block::pc_nproduced_avg() { if (d_detail) { return d_detail->pc_nproduced_avg(); } else { return 0; } } float block::pc_nproduced_var() { if (d_detail) { return d_detail->pc_nproduced_var(); } else { return 0; } } float block::pc_input_buffers_full(int which) { if (d_detail) { return d_detail->pc_input_buffers_full(static_cast<size_t>(which)); } else { return 0; } } float block::pc_input_buffers_full_avg(int which) { if (d_detail) { return d_detail->pc_input_buffers_full_avg(static_cast<size_t>(which)); } else { return 0; } } float block::pc_input_buffers_full_var(int which) { if (d_detail) { return d_detail->pc_input_buffers_full_var(static_cast<size_t>(which)); } else { return 0; } } std::vector<float> block::pc_input_buffers_full() { if (d_detail) { return d_detail->pc_input_buffers_full(); } else { return std::vector<float>(1, 0); } } std::vector<float> block::pc_input_buffers_full_avg() { if (d_detail) { return d_detail->pc_input_buffers_full_avg(); } else { return std::vector<float>(1, 0); } } std::vector<float> block::pc_input_buffers_full_var() { if (d_detail) { return d_detail->pc_input_buffers_full_var(); } else { return std::vector<float>(1, 0); } } float block::pc_output_buffers_full(int which) { if (d_detail) { return d_detail->pc_output_buffers_full(static_cast<size_t>(which)); } else { return 0; } } float block::pc_output_buffers_full_avg(int which) { if (d_detail) { return d_detail->pc_output_buffers_full_avg(static_cast<size_t>(which)); } else { return 0; } } float block::pc_output_buffers_full_var(int which) { if (d_detail) { return d_detail->pc_output_buffers_full_var(static_cast<size_t>(which)); } else { return 0; } } std::vector<float> block::pc_output_buffers_full() { if (d_detail) { return d_detail->pc_output_buffers_full(); } else { return std::vector<float>(1, 0); } } std::vector<float> block::pc_output_buffers_full_avg() { if (d_detail) { return d_detail->pc_output_buffers_full_avg(); } else { return std::vector<float>(1, 0); } } std::vector<float> block::pc_output_buffers_full_var() { if (d_detail) { return d_detail->pc_output_buffers_full_var(); } else { return std::vector<float>(1, 0); } } float block::pc_work_time() { if (d_detail) { return d_detail->pc_work_time(); } else { return 0; } } float block::pc_work_time_avg() { if (d_detail) { return d_detail->pc_work_time_avg(); } else { return 0; } } float block::pc_work_time_var() { if (d_detail) { return d_detail->pc_work_time_var(); } else { return 0; } } float block::pc_work_time_total() { if (d_detail) { return d_detail->pc_work_time_total(); } else { return 0; } } float block::pc_throughput_avg() { if (d_detail) { return d_detail->pc_throughput_avg(); } else { return 0; } } void block::reset_perf_counters() { if (d_detail) { d_detail->reset_perf_counters(); } } void block::system_handler(pmt::pmt_t msg) { // GR_LOG_INFO(d_logger, boost::format("system handler %s") % msg); pmt::pmt_t op = pmt::car(msg); if (pmt::eqv(op, d_pmt_done)) { d_finished = pmt::to_long(pmt::cdr(msg)); global_block_registry.notify_blk(d_symbol_name); } else { GR_LOG_WARN(d_logger, "bad message op on system port!"); pmt::print(msg); } } void block::set_log_level(std::string level) { logger_set_level(d_logger, level); } std::string block::log_level() { std::string level; logger_get_level(d_logger, level); return level; } void block::notify_msg_neighbors() { size_t len = pmt::length(d_message_subscribers); pmt::pmt_t port_names = pmt::make_vector(len, pmt::PMT_NIL); pmt::pmt_t keys = pmt::dict_keys(d_message_subscribers); for (size_t i = 0; i < len; i++) { // for each output port pmt::pmt_t oport = pmt::nth(i, keys); // for each subscriber on this port pmt::pmt_t currlist = pmt::dict_ref(d_message_subscribers, oport, pmt::PMT_NIL); // iterate through subscribers on port while (pmt::is_pair(currlist)) { pmt::pmt_t target = pmt::car(currlist); pmt::pmt_t block = pmt::car(target); currlist = pmt::cdr(currlist); basic_block_sptr blk = global_block_registry.block_lookup(block); blk->post(d_system_port, pmt::cons(d_pmt_done, pmt::mp(true))); } } } bool block::finished() { if (detail()->ninputs() != 0) return false; else return d_finished; } void block::setup_pc_rpc() { d_pc_rpc_set = true; #if defined(GR_CTRLPORT) && defined(GR_PERFORMANCE_COUNTERS) #include <gnuradio/rpcregisterhelpers.h> d_rpc_vars.emplace_back( new rpcbasic_register_trigger<block>(alias(), "reset_perf_counters", &block::reset_perf_counters, "Reset the Performance Counters", RPC_PRIVLVL_MIN)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "noutput_items", &block::pc_noutput_items, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "noutput items", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "avg noutput_items", &block::pc_noutput_items_avg, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "Average noutput items", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "var noutput_items", &block::pc_noutput_items_var, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "Var. noutput items", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "nproduced", &block::pc_nproduced, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "items produced", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "avg nproduced", &block::pc_nproduced_avg, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "Average items produced", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "var nproduced", &block::pc_nproduced_var, pmt::mp(0), pmt::mp(32768), pmt::mp(0), "", "Var. items produced", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "work time", &block::pc_work_time, pmt::mp(0), pmt::mp(1e9), pmt::mp(0), "", "clock cycles in call to work", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "avg work time", &block::pc_work_time_avg, pmt::mp(0), pmt::mp(1e9), pmt::mp(0), "", "Average clock cycles in call to work", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "var work time", &block::pc_work_time_var, pmt::mp(0), pmt::mp(1e9), pmt::mp(0), "", "Var. clock cycles in call to work", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back( new rpcbasic_register_get<block, float>(alias(), "total work time", &block::pc_work_time_total, pmt::mp(0), pmt::mp(1e9), pmt::mp(0), "", "Total clock cycles in calls to work", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, float>( alias(), "avg throughput", &block::pc_throughput_avg, pmt::mp(0), pmt::mp(1e9), pmt::mp(0), "items/s", "Average items throughput in call to work", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "input \% full", &block::pc_input_buffers_full, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "how full input buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "avg input \% full", &block::pc_input_buffers_full_avg, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "Average of how full input buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "var input \% full", &block::pc_input_buffers_full_var, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "Var. of how full input buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "output \% full", &block::pc_output_buffers_full, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "how full output buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "avg output \% full", &block::pc_output_buffers_full_avg, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "Average of how full output buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); d_rpc_vars.emplace_back(new rpcbasic_register_get<block, std::vector<float>>( alias(), "var output \% full", &block::pc_output_buffers_full_var, pmt::make_f32vector(0, 0), pmt::make_f32vector(0, 1), pmt::make_f32vector(0, 0), "", "Var. of how full output buffers are", RPC_PRIVLVL_MIN, DISPTIME | DISPOPTSTRIP)); #endif /* defined(GR_CTRLPORT) && defined(GR_PERFORMANCE_COUNTERS) */ } std::string block::identifier() const { return d_name + "(" + std::to_string(d_unique_id) + ")"; } std::ostream& operator<<(std::ostream& os, const block* m) { os << "<block " << m->identifier() << ">"; return os; } int block::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { throw std::runtime_error("block::general_work() not implemented"); return 0; } } /* namespace gr */