/* -*- c++ -*- */ /* * Copyright 2006,2009,2010,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifndef INCLUDED_PMT_H #define INCLUDED_PMT_H #include <pmt/api.h> #include <boost/noncopyable.hpp> #include <any> #include <complex> #include <cstdint> #include <iosfwd> #include <memory> #include <stdexcept> #include <string> #include <vector> namespace gr { namespace messages { class msg_accepter; } } // namespace gr /*! * This file defines a polymorphic type and the operations on it. * * It draws heavily on the idea of scheme and lisp data types. * The interface parallels that in Guile 1.8, with the notable * exception that these objects are transparently reference counted. */ namespace pmt { /*! * \brief base class of all pmt types */ class PMT_API pmt_base { public: pmt_base(){}; pmt_base(const pmt_base&) = delete; virtual ~pmt_base(); virtual bool is_bool() const { return false; } virtual bool is_symbol() const { return false; } virtual bool is_number() const { return false; } virtual bool is_integer() const { return false; } virtual bool is_uint64() const { return false; } virtual bool is_real() const { return false; } virtual bool is_complex() const { return false; } virtual bool is_null() const { return false; } virtual bool is_pair() const { return false; } virtual bool is_tuple() const { return false; } virtual bool is_vector() const { return false; } virtual bool is_dict() const { return false; } virtual bool is_any() const { return false; } virtual bool is_uniform_vector() const { return false; } virtual bool is_u8vector() const { return false; } virtual bool is_s8vector() const { return false; } virtual bool is_u16vector() const { return false; } virtual bool is_s16vector() const { return false; } virtual bool is_u32vector() const { return false; } virtual bool is_s32vector() const { return false; } virtual bool is_u64vector() const { return false; } virtual bool is_s64vector() const { return false; } virtual bool is_f32vector() const { return false; } virtual bool is_f64vector() const { return false; } virtual bool is_c32vector() const { return false; } virtual bool is_c64vector() const { return false; } }; /*! * \brief typedef for shared pointer (transparent reference counting). */ typedef std::shared_ptr<pmt_base> pmt_t; class PMT_API exception : public std::logic_error { public: exception(const std::string& msg, pmt_t obj); }; class PMT_API wrong_type : public std::invalid_argument { public: wrong_type(const std::string& msg, pmt_t obj); }; class PMT_API out_of_range : public exception { public: out_of_range(const std::string& msg, pmt_t obj); }; class PMT_API notimplemented : public exception { public: notimplemented(const std::string& msg, pmt_t obj); }; /* * ------------------------------------------------------------------------ * Constants * ------------------------------------------------------------------------ */ PMT_API pmt_t get_PMT_NIL(); PMT_API pmt_t get_PMT_T(); PMT_API pmt_t get_PMT_F(); PMT_API pmt_t get_PMT_EOF(); #define PMT_NIL get_PMT_NIL() #define PMT_T get_PMT_T() #define PMT_F get_PMT_F() #define PMT_EOF get_PMT_EOF() /* * ------------------------------------------------------------------------ * Booleans. Two constants, #t and #f. * * In predicates, anything that is not #f is considered true. * I.e., there is a single false value, #f. * ------------------------------------------------------------------------ */ //! Return true if obj is \#t or \#f, else return false. PMT_API bool is_bool(pmt_t obj); //! Return false if obj is \#f, else return true. PMT_API bool is_true(pmt_t obj); //! Return true if obj is \#f, else return true. PMT_API bool is_false(pmt_t obj); //! Return \#f is val is false, else return \#t. PMT_API pmt_t from_bool(bool val); //! Return true if val is pmt::True, return false when val is pmt::PMT_F, // else raise wrong_type exception. PMT_API bool to_bool(pmt_t val); /* * ------------------------------------------------------------------------ * Symbols * ------------------------------------------------------------------------ */ //! Return true if obj is a symbol, else false. PMT_API bool is_symbol(const pmt_t& obj); //! Return the symbol whose name is \p s. PMT_API pmt_t string_to_symbol(const std::string& s); //! Alias for pmt_string_to_symbol PMT_API pmt_t intern(const std::string& s); /*! * If \p is a symbol, return the name of the symbol as a string. * Otherwise, raise the wrong_type exception. */ PMT_API const std::string symbol_to_string(const pmt_t& sym); /* * ------------------------------------------------------------------------ * Numbers: we support integer, real and complex * ------------------------------------------------------------------------ */ //! Return true if obj is any kind of number, else false. PMT_API bool is_number(pmt_t obj); /* * ------------------------------------------------------------------------ * Integers * ------------------------------------------------------------------------ */ //! Return true if \p x is an integer number, else false PMT_API bool is_integer(pmt_t x); //! Return the pmt value that represents the integer \p x. PMT_API pmt_t from_long(long x); /*! * \brief Convert pmt to long if possible. * * When \p x represents an exact integer that fits in a long, * return that integer. Else raise an exception, either wrong_type * when x is not an exact integer, or out_of_range when it doesn't fit. */ PMT_API long to_long(pmt_t x); /* * ------------------------------------------------------------------------ * uint64_t * ------------------------------------------------------------------------ */ //! Return true if \p x is an uint64 number, else false PMT_API bool is_uint64(pmt_t x); //! Return the pmt value that represents the uint64 \p x. PMT_API pmt_t from_uint64(uint64_t x); /*! * \brief Convert pmt to uint64 if possible. * * When \p x represents an exact integer that fits in a uint64, * return that uint64. Else raise an exception, either wrong_type * when x is not an exact uint64, or out_of_range when it doesn't fit. */ PMT_API uint64_t to_uint64(pmt_t x); /* * ------------------------------------------------------------------------ * Reals * ------------------------------------------------------------------------ */ /* * \brief Return true if \p obj is a real number, else false. */ PMT_API bool is_real(pmt_t obj); //! Return the pmt value that represents double \p x. PMT_API pmt_t from_double(double x); PMT_API pmt_t from_float(float x); /*! * \brief Convert pmt to double if possible. * * Returns the number closest to \p val that is representable * as a double. The argument \p val must be a real or integer, otherwise * a wrong_type exception is raised. */ PMT_API double to_double(pmt_t x); /*! * \brief Convert pmt to float if possible. * * This basically is to_double() with a type-cast; the PMT stores * the value as a double in any case. Use this when strict typing * is required. */ PMT_API float to_float(pmt_t x); /* * ------------------------------------------------------------------------ * Complex * ------------------------------------------------------------------------ */ /*! * \brief return true if \p obj is a complex number, false otherwise. */ PMT_API bool is_complex(pmt_t obj); //! Return a complex number constructed of the given real and imaginary parts. PMT_API pmt_t make_rectangular(double re, double im); //! Return a complex number constructed of the given real and imaginary parts. PMT_API pmt_t from_complex(double re, double im); //! Return a complex number constructed of the given a complex number. PMT_API pmt_t from_complex(const std::complex<double>& z); //! Return a complex number constructed of the given real and imaginary parts. PMT_API pmt_t pmt_from_complex(double re, double im); //! Return a complex number constructed of the given a complex number. PMT_API pmt_t pmt_from_complex(const std::complex<double>& z); /*! * If \p z is complex, real or integer, return the closest complex<double>. * Otherwise, raise the wrong_type exception. */ PMT_API std::complex<double> to_complex(pmt_t z); /* * ------------------------------------------------------------------------ * Pairs * ------------------------------------------------------------------------ */ //! Return true if \p x is the empty list, otherwise return false. PMT_API bool is_null(const pmt_t& x); //! Return true if \p obj is a pair, else false (warning: also returns true for a dict) PMT_API bool is_pair(const pmt_t& obj); //! Return a newly allocated pair whose car is \p x and whose cdr is \p y. PMT_API pmt_t cons(const pmt_t& x, const pmt_t& y); //! If \p pair is a pair, return the car of the \p pair, otherwise raise wrong_type. PMT_API pmt_t car(const pmt_t& pair); //! If \p pair is a pair, return the cdr of the \p pair, otherwise raise wrong_type. PMT_API pmt_t cdr(const pmt_t& pair); //! Stores \p value in the car field of \p pair. PMT_API void set_car(pmt_t pair, pmt_t value); //! Stores \p value in the cdr field of \p pair. PMT_API void set_cdr(pmt_t pair, pmt_t value); PMT_API pmt_t caar(pmt_t pair); PMT_API pmt_t cadr(pmt_t pair); PMT_API pmt_t cdar(pmt_t pair); PMT_API pmt_t cddr(pmt_t pair); PMT_API pmt_t caddr(pmt_t pair); PMT_API pmt_t cadddr(pmt_t pair); /* * ------------------------------------------------------------------------ * Tuples * * Store a fixed number of objects. Tuples are not modifiable, and thus * are excellent for use as messages. Indexing is zero based. * Access time to an element is O(1). * ------------------------------------------------------------------------ */ //! Return true if \p x is a tuple, otherwise false. PMT_API bool is_tuple(pmt_t x); PMT_API pmt_t make_tuple(); PMT_API pmt_t make_tuple(const pmt_t& e0); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3); PMT_API pmt_t make_tuple( const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4, const pmt_t& e5); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4, const pmt_t& e5, const pmt_t& e6); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4, const pmt_t& e5, const pmt_t& e6, const pmt_t& e7); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4, const pmt_t& e5, const pmt_t& e6, const pmt_t& e7, const pmt_t& e8); PMT_API pmt_t make_tuple(const pmt_t& e0, const pmt_t& e1, const pmt_t& e2, const pmt_t& e3, const pmt_t& e4, const pmt_t& e5, const pmt_t& e6, const pmt_t& e7, const pmt_t& e8, const pmt_t& e9); /*! * If \p x is a vector or proper list, return a tuple containing the elements of x */ PMT_API pmt_t to_tuple(const pmt_t& x); /*! * Return the contents of position \p k of \p tuple. * \p k must be a valid index of \p tuple. */ PMT_API pmt_t tuple_ref(const pmt_t& tuple, size_t k); /* * ------------------------------------------------------------------------ * Vectors * * These vectors can hold any kind of objects. Indexing is zero based. * ------------------------------------------------------------------------ */ //! Return true if \p x is a vector, otherwise false. PMT_API bool is_vector(pmt_t x); //! Make a vector of length \p k, with initial values set to \p fill PMT_API pmt_t make_vector(size_t k, pmt_t fill); /*! * Return the contents of position \p k of \p vector. * \p k must be a valid index of \p vector. */ PMT_API pmt_t vector_ref(pmt_t vector, size_t k); //! Store \p obj in position \p k. PMT_API void vector_set(pmt_t vector, size_t k, pmt_t obj); //! Store \p fill in every position of \p vector PMT_API void vector_fill(pmt_t vector, pmt_t fill); /* * ------------------------------------------------------------------------ * Binary Large Objects (BLOBs) * * Handy for passing around uninterpreted chunks of memory. * ------------------------------------------------------------------------ */ //! Return true if \p x is a blob, otherwise false. PMT_API bool is_blob(pmt_t x); /*! * \brief Make a blob given a pointer and length in bytes * * \param buf is the pointer to data to use to create blob * \param len is the size of the data in bytes. * * The data is copied into the blob. */ PMT_API pmt_t make_blob(const void* buf, size_t len); //! Return a pointer to the blob's data PMT_API const void* blob_data(pmt_t blob); //! Return the blob's length in bytes PMT_API size_t blob_length(pmt_t blob); /*! * <pre> * Uniform Numeric Vectors * * A uniform numeric vector is a vector whose elements are all of single * numeric type. pmt offers uniform numeric vectors for signed and * unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of * floating point values, and complex floating-point numbers of these * two sizes. Indexing is zero based. * * The names of the functions include these tags in their names: * * u8 unsigned 8-bit integers * s8 signed 8-bit integers * u16 unsigned 16-bit integers * s16 signed 16-bit integers * u32 unsigned 32-bit integers * s32 signed 32-bit integers * u64 unsigned 64-bit integers * s64 signed 64-bit integers * f32 the C++ type float * f64 the C++ type double * c32 the C++ type complex<float> * c64 the C++ type complex<double> * </pre> */ //! true if \p x is any kind of uniform numeric vector PMT_API bool is_uniform_vector(pmt_t x); PMT_API bool is_u8vector(pmt_t x); PMT_API bool is_s8vector(pmt_t x); PMT_API bool is_u16vector(pmt_t x); PMT_API bool is_s16vector(pmt_t x); PMT_API bool is_u32vector(pmt_t x); PMT_API bool is_s32vector(pmt_t x); PMT_API bool is_u64vector(pmt_t x); PMT_API bool is_s64vector(pmt_t x); PMT_API bool is_f32vector(pmt_t x); PMT_API bool is_f64vector(pmt_t x); PMT_API bool is_c32vector(pmt_t x); PMT_API bool is_c64vector(pmt_t x); //! item size in bytes if \p x is any kind of uniform numeric vector PMT_API size_t uniform_vector_itemsize(pmt_t x); PMT_API pmt_t make_u8vector(size_t k, uint8_t fill); PMT_API pmt_t make_s8vector(size_t k, int8_t fill); PMT_API pmt_t make_u16vector(size_t k, uint16_t fill); PMT_API pmt_t make_s16vector(size_t k, int16_t fill); PMT_API pmt_t make_u32vector(size_t k, uint32_t fill); PMT_API pmt_t make_s32vector(size_t k, int32_t fill); PMT_API pmt_t make_u64vector(size_t k, uint64_t fill); PMT_API pmt_t make_s64vector(size_t k, int64_t fill); PMT_API pmt_t make_f32vector(size_t k, float fill); PMT_API pmt_t make_f64vector(size_t k, double fill); PMT_API pmt_t make_c32vector(size_t k, std::complex<float> fill); PMT_API pmt_t make_c64vector(size_t k, std::complex<double> fill); PMT_API pmt_t init_u8vector(size_t k, const uint8_t* data); PMT_API pmt_t init_u8vector(size_t k, const std::vector<uint8_t>& data); PMT_API pmt_t init_s8vector(size_t k, const int8_t* data); PMT_API pmt_t init_s8vector(size_t k, const std::vector<int8_t>& data); PMT_API pmt_t init_u16vector(size_t k, const uint16_t* data); PMT_API pmt_t init_u16vector(size_t k, const std::vector<uint16_t>& data); PMT_API pmt_t init_s16vector(size_t k, const int16_t* data); PMT_API pmt_t init_s16vector(size_t k, const std::vector<int16_t>& data); PMT_API pmt_t init_u32vector(size_t k, const uint32_t* data); PMT_API pmt_t init_u32vector(size_t k, const std::vector<uint32_t>& data); PMT_API pmt_t init_s32vector(size_t k, const int32_t* data); PMT_API pmt_t init_s32vector(size_t k, const std::vector<int32_t>& data); PMT_API pmt_t init_u64vector(size_t k, const uint64_t* data); PMT_API pmt_t init_u64vector(size_t k, const std::vector<uint64_t>& data); PMT_API pmt_t init_s64vector(size_t k, const int64_t* data); PMT_API pmt_t init_s64vector(size_t k, const std::vector<int64_t>& data); PMT_API pmt_t init_f32vector(size_t k, const float* data); PMT_API pmt_t init_f32vector(size_t k, const std::vector<float>& data); PMT_API pmt_t init_f64vector(size_t k, const double* data); PMT_API pmt_t init_f64vector(size_t k, const std::vector<double>& data); PMT_API pmt_t init_c32vector(size_t k, const std::complex<float>* data); PMT_API pmt_t init_c32vector(size_t k, const std::vector<std::complex<float>>& data); PMT_API pmt_t init_c64vector(size_t k, const std::complex<double>* data); PMT_API pmt_t init_c64vector(size_t k, const std::vector<std::complex<double>>& data); PMT_API uint8_t u8vector_ref(pmt_t v, size_t k); PMT_API int8_t s8vector_ref(pmt_t v, size_t k); PMT_API uint16_t u16vector_ref(pmt_t v, size_t k); PMT_API int16_t s16vector_ref(pmt_t v, size_t k); PMT_API uint32_t u32vector_ref(pmt_t v, size_t k); PMT_API int32_t s32vector_ref(pmt_t v, size_t k); PMT_API uint64_t u64vector_ref(pmt_t v, size_t k); PMT_API int64_t s64vector_ref(pmt_t v, size_t k); PMT_API float f32vector_ref(pmt_t v, size_t k); PMT_API double f64vector_ref(pmt_t v, size_t k); PMT_API std::complex<float> c32vector_ref(pmt_t v, size_t k); PMT_API std::complex<double> c64vector_ref(pmt_t v, size_t k); PMT_API void u8vector_set(pmt_t v, size_t k, uint8_t x); //< v[k] = x PMT_API void s8vector_set(pmt_t v, size_t k, int8_t x); PMT_API void u16vector_set(pmt_t v, size_t k, uint16_t x); PMT_API void s16vector_set(pmt_t v, size_t k, int16_t x); PMT_API void u32vector_set(pmt_t v, size_t k, uint32_t x); PMT_API void s32vector_set(pmt_t v, size_t k, int32_t x); PMT_API void u64vector_set(pmt_t v, size_t k, uint64_t x); PMT_API void s64vector_set(pmt_t v, size_t k, int64_t x); PMT_API void f32vector_set(pmt_t v, size_t k, float x); PMT_API void f64vector_set(pmt_t v, size_t k, double x); PMT_API void c32vector_set(pmt_t v, size_t k, std::complex<float> x); PMT_API void c64vector_set(pmt_t v, size_t k, std::complex<double> x); // Return const pointers to the elements PMT_API const void* uniform_vector_elements(pmt_t v, size_t& len); //< works with any; len is in bytes PMT_API const uint8_t* u8vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const int8_t* s8vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const uint16_t* u16vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const int16_t* s16vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const uint32_t* u32vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const int32_t* s32vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const uint64_t* u64vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const int64_t* s64vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const float* f32vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const double* f64vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const std::complex<float>* c32vector_elements(pmt_t v, size_t& len); //< len is in elements PMT_API const std::complex<double>* c64vector_elements(pmt_t v, size_t& len); //< len is in elements // len is in elements PMT_API const std::vector<uint8_t> u8vector_elements(pmt_t v); PMT_API const std::vector<int8_t> s8vector_elements(pmt_t v); PMT_API const std::vector<uint16_t> u16vector_elements(pmt_t v); PMT_API const std::vector<int16_t> s16vector_elements(pmt_t v); PMT_API const std::vector<uint32_t> u32vector_elements(pmt_t v); PMT_API const std::vector<int32_t> s32vector_elements(pmt_t v); PMT_API const std::vector<uint64_t> u64vector_elements(pmt_t v); PMT_API const std::vector<int64_t> s64vector_elements(pmt_t v); PMT_API const std::vector<float> f32vector_elements(pmt_t v); PMT_API const std::vector<double> f64vector_elements(pmt_t v); PMT_API const std::vector<std::complex<float>> c32vector_elements(pmt_t v); PMT_API const std::vector<std::complex<double>> c64vector_elements(pmt_t v); // Return non-const pointers to the elements PMT_API void* uniform_vector_writable_elements(pmt_t v, size_t& len); //< works with any; len is in bytes PMT_API uint8_t* u8vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API int8_t* s8vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API uint16_t* u16vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API int16_t* s16vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API uint32_t* u32vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API int32_t* s32vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API uint64_t* u64vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API int64_t* s64vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API float* f32vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API double* f64vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API std::complex<float>* c32vector_writable_elements(pmt_t v, size_t& len); //< len is in elements PMT_API std::complex<double>* c64vector_writable_elements(pmt_t v, size_t& len); //< len is in elements /* * ------------------------------------------------------------------------ * Dictionary (a.k.a associative array, hash, map) * * This is a functional data structure that is persistent. Updating a * functional data structure does not destroy the existing version, but * rather creates a new version that coexists with the old. * ------------------------------------------------------------------------ */ //! Return true if \p obj is a dictionary PMT_API bool is_dict(const pmt_t& obj); //! Return a newly allocated dict whose car is a key-value pair \p x and whose cdr is a //! dict \p y. PMT_API pmt_t dcons(const pmt_t& x, const pmt_t& y); //! Make an empty dictionary PMT_API pmt_t make_dict(); //! Return a new dictionary with \p key associated with \p value. PMT_API pmt_t dict_add(const pmt_t& dict, const pmt_t& key, const pmt_t& value); //! Return a new dictionary with \p key removed. PMT_API pmt_t dict_delete(const pmt_t& dict, const pmt_t& key); //! Return true if \p key exists in \p dict PMT_API bool dict_has_key(const pmt_t& dict, const pmt_t& key); //! If \p key exists in \p dict, return associated value; otherwise return \p not_found. PMT_API pmt_t dict_ref(const pmt_t& dict, const pmt_t& key, const pmt_t& not_found); //! Return list of (key . value) pairs PMT_API pmt_t dict_items(pmt_t dict); //! Return list of keys PMT_API pmt_t dict_keys(pmt_t dict); //! Return a new dictionary \p dict1 with k=>v pairs from \p dict2 added. PMT_API pmt_t dict_update(const pmt_t& dict1, const pmt_t& dict2); //! Return list of values PMT_API pmt_t dict_values(pmt_t dict); /* * ------------------------------------------------------------------------ * Any (wraps std::any -- can be used to wrap pretty much anything) * * Cannot be serialized or used across process boundaries. * ------------------------------------------------------------------------ */ //! Return true if \p obj is an any PMT_API bool is_any(pmt_t obj); //! make an any PMT_API pmt_t make_any(const std::any& any); //! Return underlying std::any PMT_API std::any any_ref(pmt_t obj); //! Store \p any in \p obj PMT_API void any_set(pmt_t obj, const std::any& any); /* * ------------------------------------------------------------------------ * msg_accepter -- pmt representation of pmt::msg_accepter * ------------------------------------------------------------------------ */ //! Return true if \p obj is a msg_accepter PMT_API bool is_msg_accepter(const pmt_t& obj); //! make a msg_accepter PMT_API pmt_t make_msg_accepter(std::shared_ptr<gr::messages::msg_accepter> ma); //! Return underlying msg_accepter PMT_API std::shared_ptr<gr::messages::msg_accepter> msg_accepter_ref(const pmt_t& obj); /* * ------------------------------------------------------------------------ * General functions * ------------------------------------------------------------------------ */ /*! * Returns true if the object is a PDU meaning: * the object is a pair * the car is a dictionary type object (including an empty dict) * the cdr is a uniform vector of any type */ PMT_API bool is_pdu(const pmt_t& obj); //! Return true if x and y are the same object; otherwise return false. PMT_API bool eq(const pmt_t& x, const pmt_t& y); /*! * \brief Return true if x and y should normally be regarded as the same object, else * false. * * <pre> * eqv returns true if: * x and y are the same object. * x and y are both \#t or both \#f. * x and y are both symbols and their names are the same. * x and y are both numbers, and are numerically equal. * x and y are both the empty list (nil). * x and y are pairs or vectors that denote same location in store. * </pre> */ PMT_API bool eqv(const pmt_t& x, const pmt_t& y); /*! * pmt::equal recursively compares the contents of pairs and vectors, * applying pmt::eqv on other objects such as numbers and symbols. * pmt::equal may fail to terminate if its arguments are circular data * structures. */ PMT_API bool equal(const pmt_t& x, const pmt_t& y); //! Return the number of elements in v PMT_API size_t length(const pmt_t& v); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt::eq to compare \p obj with car fields of the pairs in \p alist. */ PMT_API pmt_t assq(pmt_t obj, pmt_t alist); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt::eqv to compare \p obj with car fields of the pairs in \p alist. */ PMT_API pmt_t assv(pmt_t obj, pmt_t alist); /*! * \brief Find the first pair in \p alist whose car field is \p obj * and return that pair. * * \p alist (for "association list") must be a list of pairs. If no pair * in \p alist has \p obj as its car then \#f is returned. * Uses pmt::equal to compare \p obj with car fields of the pairs in \p alist. */ PMT_API pmt_t assoc(pmt_t obj, pmt_t alist); /*! * \brief Apply \p proc element-wise to the elements of list and returns * a list of the results, in order. * * \p list must be a list. The dynamic order in which \p proc is * applied to the elements of \p list is unspecified. */ PMT_API pmt_t map(pmt_t proc(const pmt_t&), pmt_t list); /*! * \brief reverse \p list. * * \p list must be a proper list. */ PMT_API pmt_t reverse(pmt_t list); /*! * \brief destructively reverse \p list. * * \p list must be a proper list. */ PMT_API pmt_t reverse_x(pmt_t list); /*! * \brief (acons x y a) == (cons (cons x y) a) */ inline static pmt_t acons(pmt_t x, pmt_t y, pmt_t a) { return dcons(cons(x, y), a); } /*! * \brief locates \p nth element of \n list where the car is the 'zeroth' element. */ PMT_API pmt_t nth(size_t n, pmt_t list); /*! * \brief returns the tail of \p list that would be obtained by calling * cdr \p n times in succession. */ PMT_API pmt_t nthcdr(size_t n, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt::memq use pmt::eq to compare \p obj with the elements of \p list. */ PMT_API pmt_t memq(pmt_t obj, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt::memv use pmt::eqv to compare \p obj with the elements of \p list. */ PMT_API pmt_t memv(pmt_t obj, pmt_t list); /*! * \brief Return the first sublist of \p list whose car is \p obj. * If \p obj does not occur in \p list, then \#f is returned. * pmt::member use pmt::equal to compare \p obj with the elements of \p list. */ PMT_API pmt_t member(pmt_t obj, pmt_t list); /*! * \brief Return true if every element of \p list1 appears in \p list2, and false * otherwise. Comparisons are done with pmt::eqv. */ PMT_API bool subsetp(pmt_t list1, pmt_t list2); /*! * \brief Return a list of length 1 containing \p x1 */ PMT_API pmt_t list1(const pmt_t& x1); /*! * \brief Return a list of length 2 containing \p x1, \p x2 */ PMT_API pmt_t list2(const pmt_t& x1, const pmt_t& x2); /*! * \brief Return a list of length 3 containing \p x1, \p x2, \p x3 */ PMT_API pmt_t list3(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3); /*! * \brief Return a list of length 4 containing \p x1, \p x2, \p x3, \p x4 */ PMT_API pmt_t list4(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4); /*! * \brief Return a list of length 5 containing \p x1, \p x2, \p x3, \p x4, \p x5 */ PMT_API pmt_t list5( const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5); /*! * \brief Return a list of length 6 containing \p x1, \p x2, \p x3, \p x4, \p * x5, \p x6 */ PMT_API pmt_t list6(const pmt_t& x1, const pmt_t& x2, const pmt_t& x3, const pmt_t& x4, const pmt_t& x5, const pmt_t& x6); /*! * \brief Return \p list with \p item added to it. */ PMT_API pmt_t list_add(pmt_t list, const pmt_t& item); /*! * \brief Return \p list with \p item removed from it. */ PMT_API pmt_t list_rm(pmt_t list, const pmt_t& item); /*! * \brief Return bool of \p list contains \p item */ PMT_API bool list_has(pmt_t list, const pmt_t& item); /* * ------------------------------------------------------------------------ * read / write * ------------------------------------------------------------------------ */ //! return true if obj is the EOF object, otherwise return false. PMT_API bool is_eof_object(pmt_t obj); /*! * read converts external representations of pmt objects into the * objects themselves. Read returns the next object parsable from * the given input port, updating port to point to the first * character past the end of the external representation of the * object. * * If an end of file is encountered in the input before any * characters are found that can begin an object, then an end of file * object is returned. The port remains open, and further attempts * to read will also return an end of file object. If an end of file * is encountered after the beginning of an object's external * representation, but the external representation is incomplete and * therefore not parsable, an error is signaled. */ PMT_API pmt_t read(std::istream& port); /*! * Write a written representation of \p obj to the given \p port. */ PMT_API void write(pmt_t obj, std::ostream& port); /*! * Return a string representation of \p obj. * This is the same output as would be generated by pmt::write. */ PMT_API std::string write_string(pmt_t obj); PMT_API std::ostream& operator<<(std::ostream& os, pmt_t obj); /*! * \brief Write pmt string representation to stdout. */ PMT_API void print(pmt_t v); /* * ------------------------------------------------------------------------ * portable byte stream representation * ------------------------------------------------------------------------ */ /*! * \brief Write portable byte-serial representation of \p obj to \p sink */ PMT_API bool serialize(pmt_t obj, std::streambuf& sink); /*! * \brief Create obj from portable byte-serial representation */ PMT_API pmt_t deserialize(std::streambuf& source); PMT_API void dump_sizeof(); // debugging /*! * \brief Provide a simple string generating interface to pmt's serialize function */ PMT_API std::string serialize_str(pmt_t obj); /*! * \brief Provide a simple string generating interface to pmt's deserialize function */ PMT_API pmt_t deserialize_str(std::string str); /*! * \brief Provide a comparator function object to allow pmt use in stl types */ class comparator { public: bool operator()(pmt::pmt_t const& p1, pmt::pmt_t const& p2) const { return pmt::eqv(p1, p2) ? false : p1.get() > p2.get(); } }; } /* namespace pmt */ #include <pmt/pmt_sugar.h> #endif /* INCLUDED_PMT_H */