/* -*- c++ -*- */ /* * Copyright 2003,2005,2008,2013,2018 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ /* * mathematical odds and ends. */ #ifndef _GR_MATH_H_ #define _GR_MATH_H_ #include <gnuradio/api.h> #include <gnuradio/gr_complex.h> #include <cmath> /* * \brief Define commonly used mathematical constants * \ingroup misc * * Mathematical constants are neither defined in the C standard * nor the C++ standard. For -std=c{++}11 M_LOG2E and M_SQRT2 won't * compile. GR_M_PI actually works with C++ but is defined here for the sake * of consistency. */ #define GR_M_PI 3.14159265358979323846 /* pi */ #define GR_M_PI_4 0.78539816339744830961566084582 /* pi/4 */ #define GR_M_TWOPI 6.28318530717958647692 /* 2*pi */ #define GR_M_SQRT2 1.41421356237309504880 /* sqrt(2) */ #define GR_M_ONE_OVER_2PI 0.15915494309189533577 /* 1 / (2*pi) */ #define GR_M_MINUS_TWO_PI -6.28318530717958647692 /* - 2*pi */ namespace gr { static inline void fast_cc_multiply(gr_complex& out, const gr_complex cc1, const gr_complex cc2) { // The built-in complex.h multiply has significant NaN/INF checking that // considerably slows down performance. While on some compilers the // -fcx-limit-range flag can be used, this fast function makes the math consistent // in terms of performance for the Costas loop. float o_r, o_i; o_r = (cc1.real() * cc2.real()) - (cc1.imag() * cc2.imag()); o_i = (cc1.real() * cc2.imag()) + (cc1.imag() * cc2.real()); out.real(o_r); out.imag(o_i); } static inline bool is_power_of_2(long x) { return x != 0 && (x & (x - 1)) == 0; } /*! * \brief Fast arc tangent using table lookup and linear interpolation * \ingroup misc * * \param y component of input vector * \param x component of input vector * \returns float angle angle of vector (x, y) in radians * * This function calculates the angle of the vector (x,y) based on a * table lookup and linear interpolation. The table uses a 256 point * table covering -45 to +45 degrees and uses symmetry to determine * the final angle value in the range of -180 to 180 degrees. Note * that this function uses the small angle approximation for values * close to zero. This routine calculates the arc tangent with an * average error of +/- 0.045 degrees. */ GR_RUNTIME_API float fast_atan2f(float y, float x); static inline float fast_atan2f(gr_complex z) { return fast_atan2f(z.imag(), z.real()); } /* This bounds x by +/- clip without a branch */ static inline float branchless_clip(float x, float clip) { return 0.5 * (std::abs(x + clip) - std::abs(x - clip)); } static inline float clip(float x, float clip) { float y = x; if (x > clip) y = clip; else if (x < -clip) y = -clip; return y; } // Slicer Functions static inline unsigned int binary_slicer(float x) { if (x >= 0) return 1; else return 0; } static inline unsigned int quad_45deg_slicer(float r, float i) { unsigned int ret = 0; if ((r >= 0) && (i >= 0)) ret = 0; else if ((r < 0) && (i >= 0)) ret = 1; else if ((r < 0) && (i < 0)) ret = 2; else ret = 3; return ret; } static inline unsigned int quad_0deg_slicer(float r, float i) { unsigned int ret = 0; if (fabsf(r) > fabsf(i)) { if (r > 0) ret = 0; else ret = 2; } else { if (i > 0) ret = 1; else ret = 3; } return ret; } static inline unsigned int quad_45deg_slicer(gr_complex x) { return quad_45deg_slicer(x.real(), x.imag()); } static inline unsigned int quad_0deg_slicer(gr_complex x) { return quad_0deg_slicer(x.real(), x.imag()); } // Branchless Slicer Functions static inline unsigned int branchless_binary_slicer(float x) { return (x >= 0); } static inline unsigned int branchless_quad_0deg_slicer(float r, float i) { unsigned int ret = 0; ret = (fabsf(r) > fabsf(i)) * (((r < 0) << 0x1)); // either 0 (00) or 2 (10) ret |= (fabsf(i) > fabsf(r)) * (((i < 0) << 0x1) | 0x1); // either 1 (01) or 3 (11) return ret; } static inline unsigned int branchless_quad_0deg_slicer(gr_complex x) { return branchless_quad_0deg_slicer(x.real(), x.imag()); } static inline unsigned int branchless_quad_45deg_slicer(float r, float i) { char ret = (r <= 0); ret |= ((i <= 0) << 1); return (ret ^ ((ret & 0x2) >> 0x1)); } static inline unsigned int branchless_quad_45deg_slicer(gr_complex x) { return branchless_quad_45deg_slicer(x.real(), x.imag()); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x rounded down to a multiple of \p pow2. */ static inline size_t p2_round_down(size_t x, size_t pow2) { return x & -pow2; } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x rounded up to a multiple of \p pow2. */ static inline size_t p2_round_up(size_t x, size_t pow2) { return p2_round_down(x + pow2 - 1, pow2); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p x modulo \p pow2. */ static inline size_t p2_modulo(size_t x, size_t pow2) { return x & (pow2 - 1); } /*! * \param x any value * \param pow2 must be a power of 2 * \returns \p pow2 - (\p x modulo \p pow2). */ static inline size_t p2_modulo_neg(size_t x, size_t pow2) { return pow2 - p2_modulo(x, pow2); } } /* namespace gr */ #endif /* _GR_MATH_H_ */