/* -*- c++ -*- */ /* * Copyright 2002,2004,2013 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_GR_FXPT_NCO_H #define INCLUDED_GR_FXPT_NCO_H #include <gnuradio/api.h> #include <gnuradio/fxpt.h> #include <gnuradio/gr_complex.h> #include <stdint.h> namespace gr { /*! * \brief Numerically Controlled Oscillator (NCO) * \ingroup misc */ class /*GR_RUNTIME_API*/ fxpt_nco { uint32_t d_phase; int32_t d_phase_inc; public: fxpt_nco() : d_phase(0), d_phase_inc(0) {} ~fxpt_nco() {} // radians void set_phase(float angle) { d_phase = gr::fxpt::float_to_fixed(angle); } void adjust_phase(float delta_phase) { d_phase += gr::fxpt::float_to_fixed(delta_phase); } // angle_rate is in radians / step void set_freq(float angle_rate){ d_phase_inc = gr::fxpt::float_to_fixed(angle_rate); } // angle_rate is a delta in radians / step void adjust_freq(float delta_angle_rate) { d_phase_inc += gr::fxpt::float_to_fixed(delta_angle_rate); } // increment current phase angle void step() { d_phase += d_phase_inc; } void step(int n) { d_phase += d_phase_inc * n; } // units are radians / step float get_phase() const { return gr::fxpt::fixed_to_float(d_phase); } float get_freq() const { return gr::fxpt::fixed_to_float(d_phase_inc); } // compute sin and cos for current phase angle void sincos(float *sinx, float *cosx) const { *sinx = gr::fxpt::sin(d_phase); *cosx = gr::fxpt::cos(d_phase); } // compute cos and sin for a block of phase angles void sincos(gr_complex *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = gr_complex(gr::fxpt::cos(d_phase) * ampl, gr::fxpt::sin(d_phase) * ampl); step(); } } // compute sin for a block of phase angles void sin(float *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (float)(gr::fxpt::sin(d_phase) * ampl); step(); } } // compute cos for a block of phase angles void cos(float *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (float)(gr::fxpt::cos(d_phase) * ampl); step (); } } // compute sin for a block of phase angles void sin(short *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (short)(gr::fxpt::sin(d_phase) * ampl); step(); } } // compute cos for a block of phase angles void cos(short *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (short)(gr::fxpt::cos(d_phase) * ampl); step(); } } // compute sin for a block of phase angles void sin(int *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (int)(gr::fxpt::sin(d_phase) * ampl); step(); } } // compute cos for a block of phase angles void cos(int *output, int noutput_items, double ampl=1.0) { for(int i = 0; i < noutput_items; i++) { output[i] = (int)(gr::fxpt::cos(d_phase) * ampl); step(); } } // compute cos or sin for current phase angle float cos() const { return gr::fxpt::cos(d_phase); } float sin() const { return gr::fxpt::sin(d_phase); } }; } /* namespace gr */ #endif /* INCLUDED_GR_FXPT_NCO_H */