/* -*- c++ -*- */
/*
 * Copyright 2002,2004,2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifndef INCLUDED_GR_FXPT_NCO_H
#define INCLUDED_GR_FXPT_NCO_H

#include <gnuradio/api.h>
#include <gnuradio/fxpt.h>
#include <gnuradio/gr_complex.h>
#include <stdint.h>

namespace gr {

  /*!
   * \brief Numerically Controlled Oscillator (NCO)
   * \ingroup misc
   */
  class /*GR_RUNTIME_API*/ fxpt_nco
  {
    uint32_t d_phase;
    int32_t d_phase_inc;

  public:
    fxpt_nco() : d_phase(0), d_phase_inc(0) {}

    ~fxpt_nco() {}

    // radians
    void set_phase(float angle) {
      d_phase = gr::fxpt::float_to_fixed(angle);
    }

    void adjust_phase(float delta_phase) {
      d_phase += gr::fxpt::float_to_fixed(delta_phase);
    }

    // angle_rate is in radians / step
    void set_freq(float angle_rate){
      d_phase_inc = gr::fxpt::float_to_fixed(angle_rate);
    }

    // angle_rate is a delta in radians / step
    void adjust_freq(float delta_angle_rate)
    {
      d_phase_inc += gr::fxpt::float_to_fixed(delta_angle_rate);
    }

    // increment current phase angle

    void step()
    {
      d_phase += d_phase_inc;
    }

    void step(int n)
    {
      d_phase += d_phase_inc * n;
    }

    // units are radians / step
    float get_phase() const { return gr::fxpt::fixed_to_float(d_phase); }
    float get_freq() const { return gr::fxpt::fixed_to_float(d_phase_inc); }

    // compute sin and cos for current phase angle
    void sincos(float *sinx, float *cosx) const
    {
      *sinx = gr::fxpt::sin(d_phase);
      *cosx = gr::fxpt::cos(d_phase);
    }

    // compute cos and sin for a block of phase angles
    void sincos(gr_complex *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = gr_complex(gr::fxpt::cos(d_phase) * ampl, gr::fxpt::sin(d_phase) * ampl);
        step();
      }
    }

    // compute sin for a block of phase angles
    void sin(float *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = (float)(gr::fxpt::sin(d_phase) * ampl);
        step();
      }
    }

    // compute cos for a block of phase angles
    void cos(float *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = (float)(gr::fxpt::cos(d_phase) * ampl);
        step ();
      }
    }

    // compute sin for a block of phase angles
    void sin(short *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = (short)(gr::fxpt::sin(d_phase) * ampl);
        step();
      }
    }

    // compute cos for a block of phase angles
    void cos(short *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = (short)(gr::fxpt::cos(d_phase) * ampl);
        step();
      }
    }

    // compute sin for a block of phase angles
    void sin(int *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
        output[i] = (int)(gr::fxpt::sin(d_phase) * ampl);
        step();
      }
    }

    // compute cos for a block of phase angles
    void cos(int *output, int noutput_items, double ampl=1.0)
    {
      for(int i = 0; i < noutput_items; i++) {
      output[i] = (int)(gr::fxpt::cos(d_phase) * ampl);
      step();
      }
    }

    // compute cos or sin for current phase angle
    float cos() const { return gr::fxpt::cos(d_phase); }
    float sin() const { return gr::fxpt::sin(d_phase); }
  };

} /* namespace gr */

#endif /* INCLUDED_GR_FXPT_NCO_H */