#!/usr/bin/env python import sys, math import argparse from volk_test_funcs import * try: import matplotlib import matplotlib.pyplot as plt except ImportError: sys.stderr.write("Could not import Matplotlib (http://matplotlib.sourceforge.net/)\n") sys.exit(1) def main(): desc='Plot Volk performance results from a SQLite database. ' + \ 'Run one of the volk tests first (e.g, volk_math.py)' parser = argparse.ArgumentParser(description=desc) parser.add_argument('-D', '--database', type=str, default='volk_results.db', help='Database file to read data from [default: %(default)s]') parser.add_argument('-E', '--errorbars', action='store_true', default=False, help='Show error bars (1 standard dev.)') parser.add_argument('-P', '--plot', type=str, choices=['mean', 'min', 'max'], default='mean', help='Set the type of plot to produce [default: %(default)s]') args = parser.parse_args() # Set up global plotting properties matplotlib.rcParams['figure.subplot.bottom'] = 0.2 matplotlib.rcParams['figure.subplot.top'] = 0.95 matplotlib.rcParams['ytick.labelsize'] = 16 matplotlib.rcParams['xtick.labelsize'] = 16 matplotlib.rcParams['legend.fontsize'] = 18 # Get list of tables to compare conn = create_connection(args.database) tables = list_tables(conn) M = len(tables) # width of bars depends on number of comparisons wdth = 0.80/M # Colors to distinguish each table in the bar graph # More than 5 tables will wrap around to the start. colors = ['b', 'r', 'g', 'm', 'k'] # Set up figure for plotting f0 = plt.figure(0, facecolor='w', figsize=(14,10)) s0 = f0.add_subplot(1,1,1) # Create a register of names that exist in all tables tmp_regs = [] for table in tables: # Get results from the next table res = get_results(conn, table[0]) tmp_regs.append(list()) for r in res: try: tmp_regs[-1].index(r['kernel']) except ValueError: tmp_regs[-1].append(r['kernel']) # Get only those names that are common in all tables name_reg = tmp_regs[0] for t in tmp_regs[1:]: name_reg = list(set(name_reg) & set(t)) name_reg.sort() # Pull the data out for each table into a dictionary # we can ref the table by it's name and the data associated # with a given kernel in name_reg by it's name. # This ensures there is no sorting issue with the data in the # dictionary, so the kernels are plotted against each other. table_data = dict() for i,table in enumerate(tables): # Get results from the next table res = get_results(conn, table[0]) data = dict() for r in res: data[r['kernel']] = r table_data[table[0]] = data # Plot the results x0 = xrange(len(name_reg)) for i,t in enumerate(table_data): # makes x values for this data set placement x1 = [x + i*wdth for x in x0] ydata = [] stds = [] for name in name_reg: stds.append(math.sqrt(table_data[t][name]['var'])) if(args.plot == 'max'): ydata.append(table_data[t][name]['max']) elif(args.plot == 'min'): ydata.append(table_data[t][name]['min']) if(args.plot == 'mean'): ydata.append(table_data[t][name]['avg']) if(args.errorbars is False): s0.bar(x1, ydata, width=wdth, color=colors[i%M], label=t, edgecolor='k', linewidth=2) else: s0.bar(x1, ydata, width=wdth, yerr=stds, color=colors[i%M], label=t, edgecolor='k', linewidth=2, error_kw={"ecolor": 'k', "capsize":5, "linewidth":2}) s0.legend() s0.set_ylabel("Processing time (sec) [{0:G} items]".format(res[0]['nitems']), fontsize=22, fontweight='bold') s0.set_xticks(x0) s0.set_xticklabels(name_reg) for label in s0.xaxis.get_ticklabels(): label.set_rotation(45) label.set_fontsize(16) plt.show() if __name__ == "__main__": main()