#!/usr/bin/env python from gnuradio import gr from gnuradio import analog from gnuradio import audio from gnuradio import mc4020 import sys def high_speed_adc(fg, input_rate): # return blocks.file_source (gr.sizeof_short, "dummy.dat", False) return mc4020.source(input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V) # # return a gr.flow_graph # def build_graph(freq1, freq2): input_rate = 20e6 cfir_decimation = 125 audio_decimation = 5 quad_rate = input_rate / cfir_decimation audio_rate = quad_rate / audio_decimation fg = gr.flow_graph() # use high speed ADC as input source src = high_speed_adc(fg, input_rate) # compute FIR filter taps for channel selection channel_coeffs = \ filter.firdes.low_pass(1.0, # gain input_rate, # sampling rate 250e3, # low pass cutoff freq 8*100e3, # width of trans. band filter.firdes.WIN_HAMMING) # input: short; output: complex chan_filter1 = \ filter.freq_xlating_fir_filter_scf(cfir_decimation, channel_coeffs, freq1, # 1st station freq input_rate) (head1, tail1) = build_pipeline(fg, quad_rate, audio_decimation) # sound card as final sink audio_sink = audio.sink(int (audio_rate)) # now wire it all together fg.connect(src, chan_filter1) fg.connect(chan_filter1, head1) fg.connect(tail1, (audio_sink, 0)) # two stations at once? if freq2: # Extract the second station and connect # it to a second pipeline... # input: short; output: complex chan_filter2 = \ filter.freq_xlating_fir_filter_scf(cfir_decimation, channel_coeffs, freq2, # 2nd station freq input_rate) (head2, tail2) = build_pipeline(fg, quad_rate, audio_decimation) fg.connect(src, chan_filter2) fg.connect(chan_filter2, head2) fg.connect(tail2, (audio_sink, 1)) return fg def build_pipeline(fg, quad_rate, audio_decimation): '''Given a flow_graph, fg, construct a pipeline for demodulating a broadcast FM signal. The input is the downconverteed complex baseband signal. The output is the demodulated audio. build_pipeline returns a two element tuple containing the input and output endpoints. ''' fm_demod_gain = 2200.0/32768.0 audio_rate = quad_rate / audio_decimation volume = 1.0 # input: complex; output: float fm_demod = analog.quadrature_demod_cf(volume*fm_demod_gain) # compute FIR filter taps for audio filter width_of_transition_band = audio_rate / 32 audio_coeffs = filter.firdes.low_pass(1.0, # gain quad_rate, # sampling rate audio_rate/2 - width_of_transition_band, width_of_transition_band, filter.firdes.WIN_HAMMING) # input: float; output: float audio_filter = filter.fir_filter_fff(audio_decimation, audiocoeffs) fg.connect(fm_demod, audio_filter) return ((fm_demod, 0), (audio_filter, 0)) def main(args): nargs = len(args) if nargs == 1: freq1 = float(args[0]) * 1e6 freq2 = None elif nargs == 2: freq1 = float(args[0]) * 1e6 freq2 = float(args[1]) * 1e6 else: sys.stderr.write('usage: fm_demod freq1 [freq2]\n') sys.exit(1) # connect to RF front end rf_front_end = gr.microtune_4937_eval_board() if not rf_front_end.board_present_p(): raise IOError, 'RF front end not found' # set front end gain rf_front_end.set_AGC(300) IF_freq = rf_front_end.get_output_freq() IF_freq = 5.75e6 if not freq2: # one station rf_front_end.set_RF_freq(freq1) fg = build_graph(IF_freq, None) else: # two stations if abs(freq1 - freq2) > 5.5e6: raise IOError, 'freqs too far apart' target_freq = (freq1 + freq2) / 2 actual_freq = rf_front_end.set_RF_freq(target_freq) #actual_freq = target_freq fg = build_graph(IF_freq + freq1 - actual_freq, IF_freq + freq2 - actual_freq) fg.start() # fork thread(s) and return raw_input('Press Enter to quit: ') fg.stop() if __name__ == '__main__': main(sys.argv[1:])