From a80c0f4969a994655ccb18c55f8ce936abcc61f7 Mon Sep 17 00:00:00 2001
From: Ben Reynwar <ben@reynwar.net>
Date: Fri, 8 Mar 2013 20:30:47 -0700
Subject: wxgui: Enabling uninstalled python imports.

---
 gr-wxgui/python/wxgui/waterfallsink_nongl.py | 431 +++++++++++++++++++++++++++
 1 file changed, 431 insertions(+)
 create mode 100644 gr-wxgui/python/wxgui/waterfallsink_nongl.py

(limited to 'gr-wxgui/python/wxgui/waterfallsink_nongl.py')

diff --git a/gr-wxgui/python/wxgui/waterfallsink_nongl.py b/gr-wxgui/python/wxgui/waterfallsink_nongl.py
new file mode 100644
index 0000000000..37b8281927
--- /dev/null
+++ b/gr-wxgui/python/wxgui/waterfallsink_nongl.py
@@ -0,0 +1,431 @@
+#!/usr/bin/env python
+#
+# Copyright 2003-2008,2012 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, gru, fft, filter
+from gnuradio import blocks
+from gnuradio import analog
+from gnuradio.wxgui import stdgui2
+from gnuradio.filter import window
+import wx
+import gnuradio.wxgui.plot as plot
+import numpy
+import os
+import math
+
+default_fftsink_size = (640,240)
+default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
+
+class waterfall_sink_base(object):
+    def __init__(self, input_is_real=False, baseband_freq=0,
+                 sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate,
+                 average=False, avg_alpha=None, title=''):
+
+        # initialize common attributes
+        self.baseband_freq = baseband_freq
+        self.sample_rate = sample_rate
+        self.fft_size = fft_size
+        self.fft_rate = fft_rate
+        self.average = average
+        if avg_alpha is None:
+            self.avg_alpha = 2.0 / fft_rate
+        else:
+            self.avg_alpha = avg_alpha
+        self.title = title
+        self.input_is_real = input_is_real
+        self.msgq = gr.msg_queue(2)         # queue up to 2 messages
+
+    def set_average(self, average):
+        self.average = average
+        if average:
+            self.avg.set_taps(self.avg_alpha)
+        else:
+            self.avg.set_taps(1.0)
+
+    def set_avg_alpha(self, avg_alpha):
+        self.avg_alpha = avg_alpha
+
+    def set_baseband_freq(self, baseband_freq):
+        self.baseband_freq = baseband_freq
+
+    def set_sample_rate(self, sample_rate):
+        self.sample_rate = sample_rate
+        self._set_n()
+
+    def _set_n(self):
+        self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+class waterfall_sink_f(gr.hier_block2, waterfall_sink_base):
+    def __init__(self, parent, baseband_freq=0,
+                 y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate, average=False, avg_alpha=None,
+                 title='', size=default_fftsink_size, **kwargs):
+
+        gr.hier_block2.__init__(self, "waterfall_sink_f",
+                                gr.io_signature(1, 1, gr.sizeof_float),
+                                gr.io_signature(0,0,0))
+
+        waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq,
+                               sample_rate=sample_rate, fft_size=fft_size,
+                               fft_rate=fft_rate,
+                               average=average, avg_alpha=avg_alpha, title=title)
+
+        self.s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size)
+        self.one_in_n = blocks.keep_one_in_n(gr.sizeof_float * self.fft_size,
+                                             max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+        mywindow = window.blackmanharris(self.fft_size)
+        self.fft = fft.fft_vfc(self.fft_size, True, mywindow)
+        self.c2mag = blocks.complex_to_mag(self.fft_size)
+        self.avg = filter.single_pole_iir_filter_ff(1.0, self.fft_size)
+        self.log = blocks.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+        self.sink = blocks.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
+	self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink)
+
+        self.win = waterfall_window(self, parent, size=size)
+        self.set_average(self.average)
+
+
+class waterfall_sink_c(gr.hier_block2, waterfall_sink_base):
+    def __init__(self, parent, baseband_freq=0,
+                 y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+                 fft_rate=default_fft_rate, average=False, avg_alpha=None,
+                 title='', size=default_fftsink_size, **kwargs):
+
+        gr.hier_block2.__init__(self, "waterfall_sink_f",
+                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
+                                gr.io_signature(0,0,0))
+
+        waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq,
+                                     sample_rate=sample_rate, fft_size=fft_size,
+                                     fft_rate=fft_rate,
+                                     average=average, avg_alpha=avg_alpha, title=title)
+
+        self.s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size)
+        self.one_in_n = blocks.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
+                                             max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+        mywindow = window.blackmanharris(self.fft_size)
+        self.fft = fft.fft_vcc(self.fft_size, True, mywindow)
+        self.c2mag = blocks.complex_to_mag(self.fft_size)
+        self.avg = filter.single_pole_iir_filter_ff(1.0, self.fft_size)
+        self.log = blocks.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+        self.sink = blocks.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
+	self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink)
+
+        self.win = waterfall_window(self, parent, size=size)
+        self.set_average(self.average)
+
+
+# ------------------------------------------------------------------------
+
+myDATA_EVENT = wx.NewEventType()
+EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
+
+
+class DataEvent(wx.PyEvent):
+    def __init__(self, data):
+        wx.PyEvent.__init__(self)
+        self.SetEventType (myDATA_EVENT)
+        self.data = data
+
+    def Clone (self):
+        self.__class__ (self.GetId())
+
+class input_watcher (gru.msgq_runner):
+    def __init__ (self, msgq, fft_size, event_receiver, **kwds):
+        self.fft_size = fft_size
+        self.event_receiver = event_receiver
+        gru.msgq_runner.__init__(self, msgq, self.handle_msg)
+
+    def handle_msg(self, msg):
+        itemsize = int(msg.arg1())
+        nitems = int(msg.arg2())
+
+        s = msg.to_string() # get the body of the msg as a string
+
+        # There may be more than one FFT frame in the message.
+        # If so, we take only the last one
+        if nitems > 1:
+            start = itemsize * (nitems - 1)
+            s = s[start:start+itemsize]
+
+        complex_data = numpy.fromstring (s, numpy.float32)
+        de = DataEvent (complex_data)
+        wx.PostEvent (self.event_receiver, de)
+        del de
+
+class waterfall_window (wx.Panel):
+    def __init__ (self, fftsink, parent, id = -1,
+                  pos = wx.DefaultPosition, size = wx.DefaultSize,
+                  style = wx.DEFAULT_FRAME_STYLE, name = ""):
+        wx.Panel.__init__(self, parent, id, pos, size, style, name)
+        self.set_baseband_freq = fftsink.set_baseband_freq
+        self.fftsink = fftsink
+        self.bm = wx.EmptyBitmap(self.fftsink.fft_size, 300, -1)
+
+        self.scale_factor = 5.0           # FIXME should autoscale, or set this
+
+        dc1 = wx.MemoryDC()
+        dc1.SelectObject(self.bm)
+        dc1.Clear()
+
+        self.pens = self.make_pens()
+
+        wx.EVT_PAINT( self, self.OnPaint )
+        wx.EVT_CLOSE (self, self.on_close_window)
+        EVT_DATA_EVENT (self, self.set_data)
+
+        self.build_popup_menu()
+
+        wx.EVT_CLOSE (self, self.on_close_window)
+        self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
+
+        self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self)
+
+
+    def on_close_window (self, event):
+        print "waterfall_window: on_close_window"
+        self.keep_running = False
+
+    def const_list(self,const,len):
+        return [const] * len
+
+    def make_colormap(self):
+        r = []
+        r.extend(self.const_list(0,96))
+        r.extend(range(0,255,4))
+        r.extend(self.const_list(255,64))
+        r.extend(range(255,128,-4))
+
+        g = []
+        g.extend(self.const_list(0,32))
+        g.extend(range(0,255,4))
+        g.extend(self.const_list(255,64))
+        g.extend(range(255,0,-4))
+        g.extend(self.const_list(0,32))
+
+        b = range(128,255,4)
+        b.extend(self.const_list(255,64))
+        b.extend(range(255,0,-4))
+        b.extend(self.const_list(0,96))
+        return (r,g,b)
+
+    def make_pens(self):
+        (r,g,b) = self.make_colormap()
+        pens = []
+        for i in range(0,256):
+            colour = wx.Colour(r[i], g[i], b[i])
+            pens.append( wx.Pen(colour, 2, wx.SOLID))
+        return pens
+
+    def OnPaint(self, event):
+        dc = wx.PaintDC(self)
+        self.DoDrawing(dc)
+
+    def DoDrawing(self, dc=None):
+        if dc is None:
+            dc = wx.ClientDC(self)
+        dc.DrawBitmap(self.bm, 0, 0, False )
+
+
+    def const_list(self,const,len):
+        a = [const]
+        for i in range(1,len):
+            a.append(const)
+        return a
+
+
+    def set_data (self, evt):
+        dB = evt.data
+        L = len (dB)
+
+        dc1 = wx.MemoryDC()
+        dc1.SelectObject(self.bm)
+        dc1.Blit(0,1,self.fftsink.fft_size,300,dc1,0,0,wx.COPY,False,-1,-1)
+
+        x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
+        if x >= 1e9:
+            sf = 1e-9
+            units = "GHz"
+        elif x >= 1e6:
+            sf = 1e-6
+            units = "MHz"
+        else:
+            sf = 1e-3
+            units = "kHz"
+
+
+        if self.fftsink.input_is_real:     # only plot 1/2 the points
+            d_max = L/2
+            p_width = 2
+        else:
+            d_max = L/2
+            p_width = 1
+
+        scale_factor = self.scale_factor
+        if self.fftsink.input_is_real:     # real fft
+           for x_pos in range(0, d_max):
+               value = int(dB[x_pos] * scale_factor)
+               value = min(255, max(0, value))
+               dc1.SetPen(self.pens[value])
+               dc1.DrawRectangle(x_pos*p_width, 0, p_width, 2)
+        else:                               # complex fft
+           for x_pos in range(0, d_max):    # positive freqs
+               value = int(dB[x_pos] * scale_factor)
+               value = min(255, max(0, value))
+               dc1.SetPen(self.pens[value])
+               dc1.DrawRectangle(x_pos*p_width + d_max, 0, p_width, 2)
+           for x_pos in range(0 , d_max):   # negative freqs
+               value = int(dB[x_pos+d_max] * scale_factor)
+               value = min(255, max(0, value))
+               dc1.SetPen(self.pens[value])
+               dc1.DrawRectangle(x_pos*p_width, 0, p_width, 2)
+
+	del dc1
+        self.DoDrawing (None)
+
+    def on_average(self, evt):
+        # print "on_average"
+        self.fftsink.set_average(evt.IsChecked())
+
+    def on_right_click(self, event):
+        menu = self.popup_menu
+        for id, pred in self.checkmarks.items():
+            item = menu.FindItemById(id)
+            item.Check(pred())
+        self.PopupMenu(menu, event.GetPosition())
+
+
+    def build_popup_menu(self):
+        self.id_incr_ref_level = wx.NewId()
+        self.id_decr_ref_level = wx.NewId()
+        self.id_incr_y_per_div = wx.NewId()
+        self.id_decr_y_per_div = wx.NewId()
+        self.id_y_per_div_1 = wx.NewId()
+        self.id_y_per_div_2 = wx.NewId()
+        self.id_y_per_div_5 = wx.NewId()
+        self.id_y_per_div_10 = wx.NewId()
+        self.id_y_per_div_20 = wx.NewId()
+        self.id_average = wx.NewId()
+
+        self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
+        #self.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level)
+        #self.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level)
+        #self.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div)
+        #self.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div)
+        #self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1)
+        #self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2)
+        #self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5)
+        #self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10)
+        #self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20)
+
+
+        # make a menu
+        menu = wx.Menu()
+        self.popup_menu = menu
+        menu.AppendCheckItem(self.id_average, "Average")
+        # menu.Append(self.id_incr_ref_level, "Incr Ref Level")
+        # menu.Append(self.id_decr_ref_level, "Decr Ref Level")
+        # menu.Append(self.id_incr_y_per_div, "Incr dB/div")
+        # menu.Append(self.id_decr_y_per_div, "Decr dB/div")
+        # menu.AppendSeparator()
+        # we'd use RadioItems for these, but they're not supported on Mac
+        #menu.AppendCheckItem(self.id_y_per_div_1, "1 dB/div")
+        #menu.AppendCheckItem(self.id_y_per_div_2, "2 dB/div")
+        #menu.AppendCheckItem(self.id_y_per_div_5, "5 dB/div")
+        #menu.AppendCheckItem(self.id_y_per_div_10, "10 dB/div")
+        #menu.AppendCheckItem(self.id_y_per_div_20, "20 dB/div")
+
+        self.checkmarks = {
+            self.id_average : lambda : self.fftsink.average
+            #self.id_y_per_div_1 : lambda : self.fftsink.y_per_div == 1,
+            #self.id_y_per_div_2 : lambda : self.fftsink.y_per_div == 2,
+            #self.id_y_per_div_5 : lambda : self.fftsink.y_per_div == 5,
+            #self.id_y_per_div_10 : lambda : self.fftsink.y_per_div == 10,
+            #self.id_y_per_div_20 : lambda : self.fftsink.y_per_div == 20,
+            }
+
+
+def next_up(v, seq):
+    """
+    Return the first item in seq that is > v.
+    """
+    for s in seq:
+        if s > v:
+            return s
+    return v
+
+def next_down(v, seq):
+    """
+    Return the last item in seq that is < v.
+    """
+    rseq = list(seq[:])
+    rseq.reverse()
+
+    for s in rseq:
+        if s < v:
+            return s
+    return v
+
+
+# ----------------------------------------------------------------
+# Standalone test app
+# ----------------------------------------------------------------
+
+class test_top_block (stdgui2.std_top_block):
+    def __init__(self, frame, panel, vbox, argv):
+        stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
+
+        fft_size = 512
+
+        # build our flow graph
+        input_rate = 20.000e3
+
+        # Generate a complex sinusoid
+        self.src1 = analog.sig_source_c(input_rate, analog.GR_SIN_WAVE, 5.75e3, 1000)
+        #src1 = analog.sig_source_c(input_rate, analog.GR_CONST_WAVE, 5.75e3, 1000)
+
+        # We add these throttle blocks so that this demo doesn't
+        # suck down all the CPU available.  Normally you wouldn't use these.
+        self.thr1 = blocks.throttle(gr.sizeof_gr_complex, input_rate)
+
+        sink1 = waterfall_sink_c(panel, title="Complex Data", fft_size=fft_size,
+                                 sample_rate=input_rate, baseband_freq=100e3)
+	self.connect(self.src1, self.thr1, sink1)
+        vbox.Add(sink1.win, 1, wx.EXPAND)
+
+        # generate a real sinusoid
+        self.src2 = analog.sig_source_f(input_rate, analog.GR_SIN_WAVE, 5.75e3, 1000)
+        self.thr2 = blocks.throttle(gr.sizeof_float, input_rate)
+        sink2 = waterfall_sink_f(panel, title="Real Data", fft_size=fft_size,
+                                 sample_rate=input_rate, baseband_freq=100e3)
+	self.connect(self.src2, self.thr2, sink2)
+        vbox.Add(sink2.win, 1, wx.EXPAND)
+
+
+def main ():
+    app = stdgui2.stdapp(test_top_block, "Waterfall Sink Test App")
+    app.MainLoop()
+
+if __name__ == '__main__':
+    main()
-- 
cgit v1.2.3