From 4ef7df79df01a838e9af40dd1e455436de023782 Mon Sep 17 00:00:00 2001
From: "A. Maitland Bottoms" <bottoms@debian.org>
Date: Sat, 25 Jun 2016 18:10:36 -0400
Subject: gr-vocoder: remove embedded gsm

---
 gr-vocoder/lib/gsm/lpc.c | 341 -----------------------------------------------
 1 file changed, 341 deletions(-)
 delete mode 100644 gr-vocoder/lib/gsm/lpc.c

(limited to 'gr-vocoder/lib/gsm/lpc.c')

diff --git a/gr-vocoder/lib/gsm/lpc.c b/gr-vocoder/lib/gsm/lpc.c
deleted file mode 100644
index bc1695c414..0000000000
--- a/gr-vocoder/lib/gsm/lpc.c
+++ /dev/null
@@ -1,341 +0,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header$ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-#include "proto.h"
-
-#undef	P
-
-/*
- *  4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
- */
-
-/* 4.2.4 */
-
-
-static void Autocorrelation P2((s, L_ACF),
-	word     * s,		/* [0..159]	IN/OUT  */
- 	longword * L_ACF)	/* [0..8]	OUT     */
-/*
- *  The goal is to compute the array L_ACF[k].  The signal s[i] must
- *  be scaled in order to avoid an overflow situation.
- */
-{
-	register int	k, i;
-
-	word		temp, smax, scalauto;
-
-#ifdef	USE_FLOAT_MUL
-	float		float_s[160];
-#endif
-
-	/*  Dynamic scaling of the array  s[0..159]
-	 */
-
-	/*  Search for the maximum.
-	 */
-	smax = 0;
-	for (k = 0; k <= 159; k++) {
-		temp = GSM_ABS( s[k] );
-		if (temp > smax) smax = temp;
-	}
-
-	/*  Computation of the scaling factor.
-	 */
-	if (smax == 0) scalauto = 0;
-	else {
-		assert(smax > 0);
-		scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
-	}
-
-	/*  Scaling of the array s[0...159]
-	 */
-
-	if (scalauto > 0) {
-
-# ifdef USE_FLOAT_MUL
-#   define SCALE(n)	\
-	case n: for (k = 0; k <= 159; k++) \
-			float_s[k] = (float)	\
-				(s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
-		break;
-# else
-#   define SCALE(n)	\
-	case n: for (k = 0; k <= 159; k++) \
-			s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
-		break;
-# endif /* USE_FLOAT_MUL */
-
-		switch (scalauto) {
-		SCALE(1)
-		SCALE(2)
-		SCALE(3)
-		SCALE(4)
-		}
-# undef	SCALE
-	}
-# ifdef	USE_FLOAT_MUL
-	else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
-# endif
-
-	/*  Compute the L_ACF[..].
-	 */
-	{
-# ifdef	USE_FLOAT_MUL
-		register float * sp = float_s;
-		register float   sl = *sp;
-
-#		define STEP(k)	 L_ACF[k] += (longword)(sl * sp[ -(k) ]);
-# else
-		word  * sp = s;
-		word    sl = *sp;
-
-#		define STEP(k)	 L_ACF[k] += ((longword)sl * sp[ -(k) ]);
-# endif
-
-#	define NEXTI	 sl = *++sp
-
-
-	for (k = 9; k--; L_ACF[k] = 0) ;
-
-	STEP (0);
-	NEXTI;
-	STEP(0); STEP(1);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
-
-	for (i = 8; i <= 159; i++) {
-
-		NEXTI;
-
-		STEP(0);
-		STEP(1); STEP(2); STEP(3); STEP(4);
-		STEP(5); STEP(6); STEP(7); STEP(8);
-	}
-
-	for (k = 9; k--; L_ACF[k] <<= 1) ;
-
-	}
-	/*   Rescaling of the array s[0..159]
-	 */
-	if (scalauto > 0) {
-		assert(scalauto <= 4);
-		for (k = 160; k--; *s++ <<= scalauto) ;
-	}
-}
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-
-static void Fast_Autocorrelation P2((s, L_ACF),
-	word * s,		/* [0..159]	IN/OUT  */
- 	longword * L_ACF)	/* [0..8]	OUT     */
-{
-	register int	k, i;
-	float f_L_ACF[9];
-	float scale;
-
-	float          s_f[160];
-	register float *sf = s_f;
-
-	for (i = 0; i < 160; ++i) sf[i] = s[i];
-	for (k = 0; k <= 8; k++) {
-		register float L_temp2 = 0;
-		register float *sfl = sf - k;
-		for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
-		f_L_ACF[k] = L_temp2;
-	}
-	scale = MAX_LONGWORD / f_L_ACF[0];
-
-	for (k = 0; k <= 8; k++) {
-		L_ACF[k] = f_L_ACF[k] * scale;
-	}
-}
-#endif	/* defined (USE_FLOAT_MUL) && defined (FAST) */
-
-/* 4.2.5 */
-
-static void Reflection_coefficients P2( (L_ACF, r),
-	longword	* L_ACF,		/* 0...8	IN	*/
-	register word	* r			/* 0...7	OUT 	*/
-)
-{
-	register int	i, m, n;
-	register word	temp;
-	register longword ltmp;
-	word		ACF[9];	/* 0..8 */
-	word		P[  9];	/* 0..8 */
-	word		K[  9]; /* 2..8 */
-
-	/*  Schur recursion with 16 bits arithmetic.
-	 */
-
-	if (L_ACF[0] == 0) {
-		for (i = 8; i--; *r++ = 0) ;
-		return;
-	}
-
-	assert( L_ACF[0] != 0 );
-	temp = gsm_norm( L_ACF[0] );
-
-	assert(temp >= 0 && temp < 32);
-
-	/* ? overflow ? */
-	for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
-
-	/*   Initialize array P[..] and K[..] for the recursion.
-	 */
-
-	for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
-	for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
-
-	/*   Compute reflection coefficients
-	 */
-	for (n = 1; n <= 8; n++, r++) {
-
-		temp = P[1];
-		temp = GSM_ABS(temp);
-		if (P[0] < temp) {
-			for (i = n; i <= 8; i++) *r++ = 0;
-			return;
-		}
-
-		*r = gsm_div( temp, P[0] );
-
-		assert(*r >= 0);
-		if (P[1] > 0) *r = -*r;		/* r[n] = sub(0, r[n]) */
-		assert (*r != MIN_WORD);
-		if (n == 8) return;
-
-		/*  Schur recursion
-		 */
-		temp = GSM_MULT_R( P[1], *r );
-		P[0] = GSM_ADD( P[0], temp );
-
-		for (m = 1; m <= 8 - n; m++) {
-			temp     = GSM_MULT_R( K[ m   ],    *r );
-			P[m]     = GSM_ADD(    P[ m+1 ],  temp );
-
-			temp     = GSM_MULT_R( P[ m+1 ],    *r );
-			K[m]     = GSM_ADD(    K[ m   ],  temp );
-		}
-	}
-}
-
-/* 4.2.6 */
-
-static void Transformation_to_Log_Area_Ratios P1((r),
-	register word	* r 			/* 0..7	   IN/OUT */
-)
-/*
- *  The following scaling for r[..] and LAR[..] has been used:
- *
- *  r[..]   = integer( real_r[..]*32768. ); -1 <= real_r < 1.
- *  LAR[..] = integer( real_LAR[..] * 16384 );
- *  with -1.625 <= real_LAR <= 1.625
- */
-{
-	register word	temp;
-	register int	i;
-
-
-	/* Computation of the LAR[0..7] from the r[0..7]
-	 */
-	for (i = 1; i <= 8; i++, r++) {
-
-		temp = *r;
-		temp = GSM_ABS(temp);
-		assert(temp >= 0);
-
-		if (temp < 22118) {
-			temp >>= 1;
-		} else if (temp < 31130) {
-			assert( temp >= 11059 );
-			temp -= 11059;
-		} else {
-			assert( temp >= 26112 );
-			temp -= 26112;
-			temp <<= 2;
-		}
-
-		*r = *r < 0 ? -temp : temp;
-		assert( *r != MIN_WORD );
-	}
-}
-
-/* 4.2.7 */
-
-static void Quantization_and_coding P1((LAR),
-	register word * LAR    	/* [0..7]	IN/OUT	*/
-)
-{
-	register word	temp;
-	longword	ltmp;
-
-
-	/*  This procedure needs four tables; the following equations
-	 *  give the optimum scaling for the constants:
-	 *
-	 *  A[0..7] = integer( real_A[0..7] * 1024 )
-	 *  B[0..7] = integer( real_B[0..7] *  512 )
-	 *  MAC[0..7] = maximum of the LARc[0..7]
-	 *  MIC[0..7] = minimum of the LARc[0..7]
-	 */
-
-#	undef STEP
-#	define	STEP( A, B, MAC, MIC )		\
-		temp = GSM_MULT( A,   *LAR );	\
-		temp = GSM_ADD(  temp,   B );	\
-		temp = GSM_ADD(  temp, 256 );	\
-		temp = SASR(     temp,   9 );	\
-		*LAR  =  temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
-		LAR++;
-
-	STEP(  20480,     0,  31, -32 );
-	STEP(  20480,     0,  31, -32 );
-	STEP(  20480,  2048,  15, -16 );
-	STEP(  20480, -2560,  15, -16 );
-
-	STEP(  13964,    94,   7,  -8 );
-	STEP(  15360, -1792,   7,  -8 );
-	STEP(   8534,  -341,   3,  -4 );
-	STEP(   9036, -1144,   3,  -4 );
-
-#	undef	STEP
-}
-
-void Gsm_LPC_Analysis P3((S, s,LARc),
-	struct gsm_state *S,
-	word 		 * s,		/* 0..159 signals	IN/OUT	*/
-        word 		 * LARc)	/* 0..7   LARc's	OUT	*/
-{
-	longword	L_ACF[9];
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-	if (S->fast) Fast_Autocorrelation (s,	  L_ACF );
-	else
-#endif
-	Autocorrelation			  (s,	  L_ACF	);
-	Reflection_coefficients		  (L_ACF, LARc	);
-	Transformation_to_Log_Area_Ratios (LARc);
-	Quantization_and_coding		  (LARc);
-}
-- 
cgit v1.2.3