From e8b4e619479dd23d87c3aef042f2452f867a1e18 Mon Sep 17 00:00:00 2001
From: Ben Reynwar <ben@reynwar.net>
Date: Thu, 7 Mar 2013 23:22:22 -0700
Subject: fft: Enabling uninstalled python imports.

---
 gr-fft/python/window.py | 179 ------------------------------------------------
 1 file changed, 179 deletions(-)
 delete mode 100644 gr-fft/python/window.py

(limited to 'gr-fft/python/window.py')

diff --git a/gr-fft/python/window.py b/gr-fft/python/window.py
deleted file mode 100644
index 0065a08a61..0000000000
--- a/gr-fft/python/window.py
+++ /dev/null
@@ -1,179 +0,0 @@
-#
-# Copyright 2004,2005,2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-'''
-Routines for designing window functions.
-'''
-
-import math
-
-def izero(x):
-    izeroepsilon = 1e-21
-    halfx = x/2.0
-    accum = u = n = 1
-    while 1:
-        temp = halfx/n
-        n += 1
-        temp *= temp
-        u *= temp
-        accum += u
-        if u >= IzeroEPSILON*sum:
-            break
-    return accum
-
-def midm1(fft_size):
-    return (fft_size - 1)/2
-
-def midp1(fft_size):
-    return (fft_size+1)/2
-
-def freq(fft_size):
-    return 2.0*math.pi/fft_size
-
-def rate(fft_size):
-    return 1.0/(fft_size >> 1)
-
-def expn(fft_size):
-    math.log(2.0)/(midn(fft_size) + 1.0)
-
-def hamming(fft_size):
-    window = []
-    for index in xrange(fft_size):
-        window.append(0.54 - 0.46 * math.cos (2 * math.pi / fft_size * index))  # Hamming window
-    return window
-
-def hanning(fft_size):
-    window = []
-    for index in xrange(fft_size):
-        window.append(0.5 - 0.5 * math.cos (2 * math.pi / fft_size * index))  #  von Hann window
-    return window
-
-def welch(fft_size):
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        window[j] = window[index] = (1.0 - math.sqrt((index - midm1(fft_size)) / midp1(fft_size)))
-        j -= 1
-    return window
-
-def parzen(fft_size):
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        window[j] = window[index] = (1.0 - math.abs((index - midm1(fft_size)) / midp1(fft_size)))
-        j -= 1
-    return window
-
-def bartlett(fft_size):
-    mfrq = freq(fft_size)
-    angle = 0
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        window[j] = window[index] = angle
-        angle += freq
-        j -= 1
-    return window
-
-def blackman2(fft_size):
-    mfrq = freq(fft_size)
-    angle = 0
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        cx = math.cos(angle)
-        window[j] = window[index] = (.34401 + (cx * (-.49755 + (cx * .15844))))
-        angle += freq
-        j -= 1
-    return window
-
-def blackman3(fft_size):
-    mfrq = freq(fft_size)
-    angle = 0
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        cx = math.cos(angle)
-        window[j] = window[index] = (.21747 + (cx * (-.45325 + (cx * (.28256 - (cx * .04672))))))
-        angle += freq
-        j -= 1
-    return window
-
-def blackman4(fft_size):
-    mfrq = freq(fft_size)
-    angle = 0
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-        cx = math.cos(angle)
-        window[j] = window[index] = (.084037 + (cx * (-.29145 + (cx * (.375696 + (cx * (-.20762 + (cx * .041194))))))))
-        angle += freq
-        j -= 1
-    return window
-
-def exponential(fft_size):
-    expsum = 1.0
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)+1):
-      window[j] = window[i] = (expsum - 1.0)
-      expsum *= expn(fft_size)
-      j -= 1
-    return window
-
-def riemann(fft_size):
-    sr1 = freq(fft_size)
-    window = [0 for i in range(fft_size)]
-    j = fft_size-1
-    for index in xrange(midn(fft_size)):
-        if index == midn(fft_size):
-            window[index] = window[j] = 1.0
-        else:
-            cx = sr1*midn(fft_size) - index
-            window[index] = window[j] = math.sin(cx)/cx
-        j -= 1
-    return window
-
-def kaiser(fft_size,beta):
-    ibeta = 1.0/izero(beta)
-    inm1 = 1.0/(fft_size)
-    window = [0 for i in range(fft_size)]
-    for index in xrange(fft_size):
-        window[index] = izero(beta*math.sqrt(1.0 - (index * inm1)*(index * inm1))) * ibeta
-    return window
-
-# Closure to generate functions to create cos windows
-
-def coswindow(coeffs):
-    def closure(fft_size):
-        window = [0] * fft_size
-        #print list(enumerate(coeffs))
-        for w_index in range(fft_size):
-            for (c_index, coeff) in enumerate(coeffs):
-                window[w_index] += (-1)**c_index * coeff * math.cos(2.0*c_index*math.pi*(w_index+0.5)/(fft_size-1))
-        return window
-    return closure
-
-blackmanharris = coswindow((0.35875,0.48829,0.14128,0.01168))
-nuttall = coswindow((0.3635819,0.4891775,0.1365995,0.0106411))  # Wikipedia calls this Blackman-Nuttall
-nuttall_cfd = coswindow((0.355768,0.487396,0.144232,0.012604)) # Wikipedia calls this Nuttall, continuous first deriv
-flattop = coswindow((1.0,1.93,1.29,0.388,0.032)) # Flat top window, coeffs from Wikipedia
-rectangular = lambda fft_size: [1]*fft_size
-- 
cgit v1.2.3