From d9719d7da8300c8546b305dab2eff763f47d216f Mon Sep 17 00:00:00 2001
From: Johannes Demel <ufcsy@student.kit.edu>
Date: Wed, 12 Aug 2015 16:51:02 +0200
Subject: polar: refarctoring and clean-up

---
 gr-fec/python/fec/polar/README.md                  |   7 +-
 gr-fec/python/fec/polar/channel_construction.py    | 200 ++------------------
 .../python/fec/polar/channel_construction_bec.py   |   9 +-
 .../python/fec/polar/channel_construction_bsc.py   |  67 +------
 gr-fec/python/fec/polar/decoder.py                 |  26 +--
 gr-fec/python/fec/polar/encoder.py                 |  35 +---
 gr-fec/python/fec/polar/helper_functions.py        |  96 ++++------
 gr-fec/python/fec/polar/testbed.py                 | 208 ++++++++++++++++++++-
 gr-fec/python/fec/qa_polar_decoder_sc.py           |  31 +--
 gr-fec/python/fec/qa_polar_decoder_sc_list.py      |  46 +----
 gr-fec/python/fec/qa_polar_encoder.py              |   8 +-
 11 files changed, 292 insertions(+), 441 deletions(-)

(limited to 'gr-fec/python')

diff --git a/gr-fec/python/fec/polar/README.md b/gr-fec/python/fec/polar/README.md
index 2bd00dc3de..d425e8650d 100644
--- a/gr-fec/python/fec/polar/README.md
+++ b/gr-fec/python/fec/polar/README.md
@@ -1,4 +1,9 @@
 POLAR Code Python test functions module
 ===========
 
-This folder contains all the necessary files for POLAR code testcode. It shall serve as a reference later on.
\ No newline at end of file
+This directory contains all the necessary files for POLAR code testcode.
+It serves as a reference for C++ implementations.
+
+'polar_channel_construction' exposes functionality to calculate polar channels for different sizes.
+It may be used to calculate Bhattacharyya parameters once and store them in a file in '~/.gnuradio/polar'.
+Frozen bit positions are recalculated on every run.
\ No newline at end of file
diff --git a/gr-fec/python/fec/polar/channel_construction.py b/gr-fec/python/fec/polar/channel_construction.py
index 9c38d3a7e6..bf3ff925d8 100644
--- a/gr-fec/python/fec/polar/channel_construction.py
+++ b/gr-fec/python/fec/polar/channel_construction.py
@@ -24,9 +24,9 @@ foundational paper for polar codes.
 '''
 
 
-import numpy as np
 from channel_construction_bec import calculate_bec_channel_capacities
 from channel_construction_bec import design_snr_to_bec_eta
+from channel_construction_bec import bhattacharyya_bounds
 from channel_construction_bsc import tal_vardy_tpm_algorithm
 from helper_functions import *
 import matplotlib.pyplot as plt
@@ -59,6 +59,12 @@ def get_bec_frozen_indices(nblock, kfrozen, eta):
     return positions
 
 
+def get_frozen_bit_mask(frozen_indices, block_size):
+    frozen_mask = np.zeros(block_size, dtype=int)
+    frozen_mask[frozen_indices] = 1
+    return frozen_mask
+
+
 def frozen_bit_positions(block_size, info_size, design_snr=0.0):
     if not design_snr > -1.5917:
         print('bad value for design_nsr, must be > -1.5917! default=0.0')
@@ -110,201 +116,21 @@ def load_z_parameters(block_size, design_snr, mu):
     return z_params
 
 
-def prepare_merger(frozen_mask):
-    mask = []
-    for e in frozen_mask:
-        mask.append([e, ])
-    return np.array(mask, dtype=int)
-
-
-def merge_first_stage(init_mask):
-    merged_frozen_mask = []
-    for e in range(0, len(init_mask), 2):
-        v = [init_mask[e]['value'][0], init_mask[e + 1]['value'][0]]
-        s = init_mask[e]['size'] * 2
-        if init_mask[e]['type'] == init_mask[e + 1]['type']:
-            t = init_mask[e]['type']
-            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-        else:
-            t = 'RPT'
-            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-    return merged_frozen_mask
-
-
-def merge_second_stage(init_mask):
-    merged_frozen_mask = []
-    for e in range(0, len(init_mask), 2):
-        if init_mask[e]['type'] == init_mask[e + 1]['type']:
-            t = init_mask[e]['type']
-            v = init_mask[e]['value']
-            v.extend(init_mask[e + 1]['value'])
-            s = init_mask[e]['size'] * 2
-            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-        elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
-            t = init_mask[e + 1]['type']
-            v = init_mask[e]['value']
-            v.extend(init_mask[e + 1]['value'])
-            s = init_mask[e]['size'] * 2
-            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-        elif init_mask[e]['type'] == 'RPT' and init_mask[e + 1]['type'] == 'ONE':
-            t = 'SPC'
-            v = init_mask[e]['value']
-            v.extend(init_mask[e + 1]['value'])
-            s = init_mask[e]['size'] * 2
-            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-        else:
-            merged_frozen_mask.append(init_mask[e])
-            merged_frozen_mask.append(init_mask[e + 1])
-    return merged_frozen_mask
-
-
-def merge_stage_n(init_mask):
-    merged_frozen_mask = []
-    n_elems = len(init_mask) - (len(init_mask) % 2)
-    for e in range(0, n_elems, 2):
-        if init_mask[e]['size'] == init_mask[e + 1]['size']:
-            if (init_mask[e]['type'] == 'ZERO' or init_mask[e]['type'] == 'ONE') and init_mask[e]['type'] == init_mask[e + 1]['type']:
-                t = init_mask[e]['type']
-                v = init_mask[e]['value']
-                v.extend(init_mask[e + 1]['value'])
-                s = init_mask[e]['size'] * 2
-                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-            elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
-                t = init_mask[e + 1]['type']
-                v = init_mask[e]['value']
-                v.extend(init_mask[e + 1]['value'])
-                s = init_mask[e]['size'] * 2
-                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-            elif init_mask[e]['type'] == 'SPC' and init_mask[e + 1]['type'] == 'ONE':
-                t = init_mask[e]['type']
-                v = init_mask[e]['value']
-                v.extend(init_mask[e + 1]['value'])
-                s = init_mask[e]['size'] * 2
-                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
-            else:
-                merged_frozen_mask.append(init_mask[e])
-                merged_frozen_mask.append(init_mask[e + 1])
-        else:
-            merged_frozen_mask.append(init_mask[e])
-            merged_frozen_mask.append(init_mask[e + 1])
-    if n_elems < len(init_mask):
-        merged_frozen_mask.append(init_mask[-1])
-    return merged_frozen_mask
-
-
-def print_decode_subframes(subframes):
-    for e in subframes:
-        print(e)
-
-
-def find_decoder_subframes(frozen_mask):
-    stages = power_of_2_int(len(frozen_mask))
-    frame_size = 2 ** stages
-
-    lock_mask = np.zeros(frame_size, dtype=int)
-    sub_mask = []
-
-    for e in frozen_mask:
-        if e == 1:
-            sub_mask.append(0)
-        else:
-            sub_mask.append(1)
-    sub_mask = np.array(sub_mask, dtype=int)
-
-    for s in range(0, stages):
-        stage_size = 2 ** s
-        mask = np.reshape(sub_mask, (-1, stage_size))
-        lock = np.reshape(lock_mask, (-1, stage_size))
-        for p in range(0, (frame_size // stage_size) - 1, 2):
-            l0 = lock[p]
-            l1 = lock[p + 1]
-            first = mask[p]
-            second = mask[p + 1]
-            print(l0, l1)
-            print(first, second)
-            if np.all(l0 == l1):
-                for eq in range(2):
-                    if np.all(first == eq) and np.all(second == eq):
-                        mask[p].fill(eq)
-                        mask[p + 1].fill(eq)
-                        lock[p].fill(s)
-                        lock[p + 1].fill(s)
-
-                if np.all(first == 0) and np.all(second == 2):
-                    mask[p].fill(2)
-                    mask[p + 1].fill(2)
-                    lock[p].fill(s)
-                    lock[p + 1].fill(s)
-
-                if np.all(first == 3) and np.all(second == 1):
-                    mask[p].fill(3)
-                    mask[p + 1].fill(3)
-                    lock[p].fill(s)
-                    lock[p + 1].fill(s)
-
-            if s == 0 and np.all(first == 0) and np.all(second == 1):
-                mask[p].fill(2)
-                mask[p + 1].fill(2)
-                lock[p].fill(s)
-                lock[p + 1].fill(s)
-
-            if s == 1 and np.all(first == 2) and np.all(second == 1):
-                mask[p].fill(3)
-                mask[p + 1].fill(3)
-                lock[p].fill(s)
-                lock[p + 1].fill(s)
-
-        sub_mask = mask.flatten()
-        lock_mask = lock.flatten()
-
-    words = {0: 'ZERO', 1: 'ONE', 2: 'RPT', 3: 'SPC'}
-    ll = lock_mask[0]
-    sub_t = sub_mask[0]
-    for i in range(len(frozen_mask)):
-        v = frozen_mask[i]
-        t = words[sub_mask[i]]
-        l = lock_mask[i]
-        # if i % 8 == 0:
-        #     print
-        if not l == ll or not sub_mask[i] == sub_t:
-            print('--------------------------')
-        ll = l
-        sub_t = sub_mask[i]
-        print('{0:4} lock {1:4} value: {2} in sub {3}'.format(i, 2 ** (l + 1), v, t))
-
-
-
 def main():
     np.set_printoptions(precision=3, linewidth=150)
     print 'channel construction Bhattacharyya bounds by Arikan'
     n = 10
     m = 2 ** n
     k = m // 2
-    design_snr = -1.59
+    design_snr = 0.0
     mu = 32
 
     z_params = load_z_parameters(m, design_snr, mu)
-    # plt.plot(z_params)
-    # plt.show()
-    frozen_indices = get_frozen_bit_indices_from_z_parameters(z_params, k)
-
-    frozen_mask = np.zeros(m, dtype=int)
-    frozen_mask[frozen_indices] = 1
-    # frozen_mask = np.reshape(frozen_mask, (-1, 32))
-    # for p in frozen_mask:
-    #     print(p)
-    #     if np.all(p == 1):
-    #         print("zero rate")
-    #     elif np.all(p == 0):
-    #         print("ONE rate")
-    #     elif p[0] == 1 and np.all(p[1:] == 0):
-    #         print("SPC code")
-    #     elif np.all(p[0:-1] == 1) and p[-1] == 0:
-    #         print("REPETITION code")
-
-    find_decoder_subframes(frozen_mask)
-
-
+    z_bounds = bhattacharyya_bounds(design_snr, m)
+    print(z_params[-10:])
+    plt.plot(z_params)
+    plt.plot(z_bounds)
+    plt.show()
 
 
 if __name__ == '__main__':
diff --git a/gr-fec/python/fec/polar/channel_construction_bec.py b/gr-fec/python/fec/polar/channel_construction_bec.py
index 341b290057..c57ca6517b 100644
--- a/gr-fec/python/fec/polar/channel_construction_bec.py
+++ b/gr-fec/python/fec/polar/channel_construction_bec.py
@@ -29,10 +29,10 @@ def bec_channel(eta):
     W(y|0) * W(y|1) = 0 or W(y|0) = W(y|1)
     transistions are 1 -> 1 or 0 -> 0 or {0, 1} -> ? (erased symbol)
     '''
-
     # looks like BSC but should be interpreted differently.
-    W = np.array((1 - eta, eta, 1 - eta), dtype=float)
-    return W
+    w = np.array((1 - eta, eta, 1 - eta), dtype=float)
+    return w
+
 
 def odd_rec(iwn):
     return iwn ** 2
@@ -73,7 +73,7 @@ def calculate_z_parameters_one_recursion(z_params):
 def calculate_bec_channel_z_parameters(eta, block_size):
     # compare [0, Arikan] eq. 38
     block_power = hf.power_of_2_int(block_size)
-    z_params = np.array([eta,], dtype=float)
+    z_params = np.array([eta, ], dtype=float)
     for block_size in range(block_power):
         z_params = calculate_z_parameters_one_recursion(z_params)
     return z_params
@@ -110,5 +110,6 @@ def main():
     print(calculate_bec_channel_z_parameters(eta, block_size))
     print(calculate_bec_channel_capacities(eta, block_size))
 
+
 if __name__ == '__main__':
     main()
diff --git a/gr-fec/python/fec/polar/channel_construction_bsc.py b/gr-fec/python/fec/polar/channel_construction_bsc.py
index 69acea861d..e16813fcb7 100755
--- a/gr-fec/python/fec/polar/channel_construction_bsc.py
+++ b/gr-fec/python/fec/polar/channel_construction_bsc.py
@@ -53,56 +53,6 @@ def bsc_channel(p):
     return W
 
 
-def get_Bn(n):
-    # this is a bit reversal matrix.
-    lw = int(np.log2(n))  # number of used bits
-    indexes = [bit_reverse(i, lw) for i in range(n)]
-    Bn = np.zeros((n, n), type(n))
-    for i, index in enumerate(indexes):
-        Bn[i][index] = 1
-    return Bn
-
-
-def get_Fn(n):
-    # this matrix defines the actual channel combining.
-    if n == 1:
-        return np.array([1, ])
-    F2 = np.array([[1, 0], [1, 1]], np.int)
-    nump = int(np.log2(n)) - 1  # number of Kronecker products to calculate
-    Fn = F2
-    for i in range(nump):
-        Fn = np.kron(Fn, F2)
-    return Fn
-
-def get_Gn(n):
-    # this matrix is called generator matrix
-    if not is_power_of_two(n):
-        print "invalid input"
-        return None
-    if n == 1:
-        return np.array([1, ])
-    Bn = get_Bn(n)
-    Fn = get_Fn(n)
-    Gn = np.dot(Bn, Fn)
-    return Gn
-
-
-def mutual_information(w):
-    '''
-    calculate mutual information I(W)
-    I(W) = sum over y e Y ( sum over x e X ( ... ) )
-    .5 W(y|x) log frac { W(y|x) }{ .5 W(y|0) + .5 W(y|1) }
-    '''
-    ydim, xdim = np.shape(w)
-    i = 0.0
-    for y in range(ydim):
-        for x in range(xdim):
-            v = w[y][x] * np.log2(w[y][x] / (0.5 * w[y][0] + 0.5 * w[y][1]))
-            i += v
-    i /= 2.0
-    return i
-
-
 def solver_equation(val, s):
     cw_lambda = codeword_lambda_callable(s)
     ic_lambda = instantanious_capacity_callable()
@@ -315,27 +265,16 @@ def normalize_q(q, tpm):
 
 def main():
     print 'channel construction BSC main'
-    n = 10
+    n = 8
     m = 2 ** n
-    k = m // 2
-    design_snr = 0.5
-    mu = 32
-
+    design_snr = 0.0
+    mu = 16
 
     z_params = tal_vardy_tpm_algorithm(m, design_snr, mu)
     print(z_params)
     plt.plot(z_params)
     plt.show()
 
-    # q = discretize_awgn(mu, design_snr)
-
-
-    # print('discretized:', np.sum(q))
-    # qu = upper_convolve(q, mu)
-    # print('upper_convolve:', np.sum(qu))
-    # q0 = lower_convolve(q, mu)
-    # print('lower_convolve:', np.sum(q0))
-
 
 if __name__ == '__main__':
     main()
diff --git a/gr-fec/python/fec/polar/decoder.py b/gr-fec/python/fec/polar/decoder.py
index ef7d70081f..10eef9b6ed 100644
--- a/gr-fec/python/fec/polar/decoder.py
+++ b/gr-fec/python/fec/polar/decoder.py
@@ -224,13 +224,9 @@ def compare_decoder_impls():
     n = 8
     k = 4
     frozenbits = np.zeros(n - k)
-    # frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
+    # frozenbitposition16 = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
     frozenbitposition = np.array((0, 1, 2, 4), dtype=int)
-    # bits = np.ones(k, dtype=int)
     bits = np.random.randint(2, size=k)
-    # bits = np.array([0, 1, 1, 1])
-    # bits = np.array([0, 1, 1, 0])
-    # bits = np.array([1, 0, 1, 0])
     print 'bits:', bits
     encoder = PolarEncoder(n, k, frozenbitposition, frozenbits)
     decoder = PolarDecoder(n, k, frozenbitposition, frozenbits)
@@ -243,7 +239,6 @@ def compare_decoder_impls():
     print (rx_st == rx_eff).all()
 
 
-
 def main():
     power = 3
     n = 2 ** power
@@ -257,33 +252,18 @@ def main():
     decoder = PolarDecoder(n, k, frozenbitposition, frozenbits)
 
     bits = np.ones(k, dtype=int)
-    # bits = np.array([1, 0, 1, 0], dtype=int)
     print "bits: ", bits
     evec = encoder.encode(bits)
     print "froz: ", encoder._insert_frozen_bits(bits)
     print "evec: ", evec
-    # dvec = decoder.decode(evec)
-    # print "dec:  ", dvec
 
-    # llr = decoder._llr(4, evec, np.array([0, 0, 0]))
-    # print "llr=", llr
     evec[1] = 0
     deced = decoder._lr_sc_decoder(evec)
     print 'SC decoded:', deced
 
-
-
-
-    # test_reverse_enc_dec()
+    test_reverse_enc_dec()
     compare_decoder_impls()
 
-    # graph_decode()
-
-
-
-
-
-
 
 if __name__ == '__main__':
-    main()
\ No newline at end of file
+    main()
diff --git a/gr-fec/python/fec/polar/encoder.py b/gr-fec/python/fec/polar/encoder.py
index 6f87a22191..3b5eea2a94 100644
--- a/gr-fec/python/fec/polar/encoder.py
+++ b/gr-fec/python/fec/polar/encoder.py
@@ -20,30 +20,13 @@
 
 import numpy as np
 from common import PolarCommon
+import helper_functions as hf
 
 
 class PolarEncoder(PolarCommon):
     def __init__(self, n, k, frozen_bit_position, frozenbits=None):
         PolarCommon.__init__(self, n, k, frozen_bit_position, frozenbits)
-        self.G = self._gn(n)
-
-    def _gn(self, n):
-        # this matrix is called generator matrix
-        if n == 1:
-            return np.array([1, ])
-        f = self._fn(n)
-        return f
-
-    def _fn(self, n):
-        # this matrix defines the actual channel combining.
-        if n == 1:
-            return np.array([1, ])
-        f2 = np.array([[1, 0], [1, 1]], np.int)
-        nump = int(np.log2(n)) - 1  # number of Kronecker products to calculate
-        fn = f2
-        for i in range(nump):
-            fn = np.kron(fn, f2)
-        return fn
+        self.G = hf.get_Fn(n)
 
     def get_gn(self):
         return self.G
@@ -59,9 +42,9 @@ class PolarEncoder(PolarCommon):
         return data
 
     def _encode_efficient(self, vec):
-        nstages = int(np.log2(self.N))
+        n_stages = int(np.log2(self.N))
         pos = np.arange(self.N, dtype=int)
-        for i in range(nstages):
+        for i in range(n_stages):
             splitted = np.reshape(pos, (2 ** (i + 1), -1))
             upper_branch = splitted[0::2].flatten()
             lower_branch = splitted[1::2].flatten()
@@ -108,7 +91,7 @@ def test_pseudo_rate_1_encoder(encoder, ntests, k):
 
 
 def test_encoder_impls():
-    print('comparing encoder implementations, matrix vs. efficient')
+    print('Compare encoder implementations, matrix vs. efficient')
     ntests = 1000
     n = 16
     k = 8
@@ -120,16 +103,12 @@ def test_encoder_impls():
 
     print('Test rate-1 encoder/decoder chain results')
     r1_test = test_pseudo_rate_1_encoder(encoder, ntests, k)
-    print 'test rate-1 encoder/decoder:', r1_test
-
+    print 'Test rate-1 encoder/decoder:', r1_test
 
 
 def main():
-    print "main in encoder"
     test_encoder_impls()
 
 
-
-
 if __name__ == '__main__':
-    main()
\ No newline at end of file
+    main()
diff --git a/gr-fec/python/fec/polar/helper_functions.py b/gr-fec/python/fec/polar/helper_functions.py
index 72501beae3..ca66bf4a50 100644
--- a/gr-fec/python/fec/polar/helper_functions.py
+++ b/gr-fec/python/fec/polar/helper_functions.py
@@ -56,6 +56,41 @@ def bit_reverse_vector(vec, n):
     return np.array([bit_reverse(e, n) for e in vec], dtype=vec.dtype)
 
 
+def get_Bn(n):
+    # this is a bit reversal matrix.
+    lw = power_of_2_int(n)  # number of used bits
+    indexes = [bit_reverse(i, lw) for i in range(n)]
+    Bn = np.zeros((n, n), type(n))
+    for i, index in enumerate(indexes):
+        Bn[i][index] = 1
+    return Bn
+
+
+def get_Fn(n):
+    # this matrix defines the actual channel combining.
+    if n == 1:
+        return np.array([1, ])
+    nump = power_of_2_int(n) - 1  # number of Kronecker products to calculate
+    F2 = np.array([[1, 0], [1, 1]], np.int)
+    Fn = F2
+    for i in range(nump):
+        Fn = np.kron(Fn, F2)
+    return Fn
+
+
+def get_Gn(n):
+    # this matrix is called generator matrix
+    if not is_power_of_two(n):
+        print "invalid input"
+        return None
+    if n == 1:
+        return np.array([1, ])
+    Bn = get_Bn(n)
+    Fn = get_Fn(n)
+    Gn = np.dot(Bn, Fn)
+    return Gn
+
+
 def unpack_byte(byte, nactive):
     if np.amin(byte) < 0 or np.amax(byte) > 255:
         return None
@@ -118,74 +153,17 @@ def bhattacharyya_parameter(w):
 def main():
     print 'helper functions'
 
-    for i in range(8):
+    for i in range(9):
         print(i, 'is power of 2: ', is_power_of_two(i))
     n = 6
     m = 2 ** n
-    k = m // 2
-    eta = 0.3
+
 
     pos = np.arange(m)
     rev_pos = bit_reverse_vector(pos, n)
     print(pos)
     print(rev_pos)
 
-    bound = 16
-    num_lanes = m // bound
-
-
-    lanes = np.zeros((num_lanes, bound), dtype=int)
-    for i in range(0, num_lanes):
-        p = i * bound
-        part = rev_pos[p: p + bound]
-        lanes[i] = part
-
-    print('reved lanes')
-    print(lanes)
-
-    # SHUFFLE!
-    shuffle_pos = bit_reverse_vector(np.arange(bound), 4)
-    for i in range(num_lanes):
-        lane = lanes[i]
-        lanes[i] = lanes[i, shuffle_pos]
-    print('\nshuffled lanes')
-    print(lanes)
-
-    # SORT HALVES
-    hb = bound // 2
-    for i in range(num_lanes // 2):
-        l0 = lanes[i]
-        l1 = lanes[i + (num_lanes // 2)]
-        l0p = copy.deepcopy(l0[hb:])
-        l0[hb:] = l1[0:hb]
-        l1[0:hb] = l0p
-        lanes[i] =l0
-        lanes[i + (num_lanes // 2)] = l1
-    print('\nsort halves')
-    print(lanes)
-
-    # 'MELT' SHUFFLE     INTERLEAVE!
-    melt_pos = np.arange(bound, dtype=int)
-    melt_pos = np.reshape(melt_pos, (2, -1)).T.flatten()
-    for i in range(num_lanes):
-        lanes[i] = lanes[i, melt_pos]
-    print('\nmelt lanes')
-    print(lanes)
-
-
-
-    for i in range(0, m, bound):
-        print("\nlook at this part")
-        part = pos[i: i + bound]
-        rev = bit_reverse_vector(part, n)
-        sorted_rev = np.sort(rev)
-        print(part)
-        print(rev)
-        print(sorted_rev)
-        sorted_part = rev[shuffle_pos]
-        print(sorted_part)
-
-
 
 if __name__ == '__main__':
     main()
diff --git a/gr-fec/python/fec/polar/testbed.py b/gr-fec/python/fec/polar/testbed.py
index c35b62099c..d60c83e776 100755
--- a/gr-fec/python/fec/polar/testbed.py
+++ b/gr-fec/python/fec/polar/testbed.py
@@ -18,9 +18,11 @@
 # Boston, MA 02110-1301, USA.
 #
 
-import numpy as np
+
 from encoder import PolarEncoder
 from decoder import PolarDecoder
+import channel_construction as cc
+from helper_functions import *
 
 import matplotlib.pyplot as plt
 
@@ -28,7 +30,9 @@ import matplotlib.pyplot as plt
 def get_frozen_bit_position():
     # frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24), dtype=int)
     # frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
-    frozenbitposition = np.load('frozen_bit_positions_n256_k128_p0.11.npy').flatten()
+    m = 256
+    n_frozen = m // 2
+    frozenbitposition = cc.get_frozen_bit_indices_from_z_parameters(cc.bhattacharyya_bounds(0.0, m), n_frozen)
     print(frozenbitposition)
     return frozenbitposition
 
@@ -140,12 +144,185 @@ def channel_analysis():
     good_indices *= 2000
     good_indices += 4000
 
-
     plt.plot(channel_counter)
     plt.plot(good_indices)
     plt.show()
 
+
+def merge_first_stage(init_mask):
+    merged_frozen_mask = []
+    for e in range(0, len(init_mask), 2):
+        v = [init_mask[e]['value'][0], init_mask[e + 1]['value'][0]]
+        s = init_mask[e]['size'] * 2
+        if init_mask[e]['type'] == init_mask[e + 1]['type']:
+            t = init_mask[e]['type']
+            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+        else:
+            t = 'RPT'
+            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+    return merged_frozen_mask
+
+
+def merge_second_stage(init_mask):
+    merged_frozen_mask = []
+    for e in range(0, len(init_mask), 2):
+        if init_mask[e]['type'] == init_mask[e + 1]['type']:
+            t = init_mask[e]['type']
+            v = init_mask[e]['value']
+            v.extend(init_mask[e + 1]['value'])
+            s = init_mask[e]['size'] * 2
+            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+        elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
+            t = init_mask[e + 1]['type']
+            v = init_mask[e]['value']
+            v.extend(init_mask[e + 1]['value'])
+            s = init_mask[e]['size'] * 2
+            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+        elif init_mask[e]['type'] == 'RPT' and init_mask[e + 1]['type'] == 'ONE':
+            t = 'SPC'
+            v = init_mask[e]['value']
+            v.extend(init_mask[e + 1]['value'])
+            s = init_mask[e]['size'] * 2
+            merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+        else:
+            merged_frozen_mask.append(init_mask[e])
+            merged_frozen_mask.append(init_mask[e + 1])
+    return merged_frozen_mask
+
+
+def merge_stage_n(init_mask):
+    merged_frozen_mask = []
+    n_elems = len(init_mask) - (len(init_mask) % 2)
+    for e in range(0, n_elems, 2):
+        if init_mask[e]['size'] == init_mask[e + 1]['size']:
+            if (init_mask[e]['type'] == 'ZERO' or init_mask[e]['type'] == 'ONE') and init_mask[e]['type'] == init_mask[e + 1]['type']:
+                t = init_mask[e]['type']
+                v = init_mask[e]['value']
+                v.extend(init_mask[e + 1]['value'])
+                s = init_mask[e]['size'] * 2
+                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+            elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
+                t = init_mask[e + 1]['type']
+                v = init_mask[e]['value']
+                v.extend(init_mask[e + 1]['value'])
+                s = init_mask[e]['size'] * 2
+                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+            elif init_mask[e]['type'] == 'SPC' and init_mask[e + 1]['type'] == 'ONE':
+                t = init_mask[e]['type']
+                v = init_mask[e]['value']
+                v.extend(init_mask[e + 1]['value'])
+                s = init_mask[e]['size'] * 2
+                merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+            else:
+                merged_frozen_mask.append(init_mask[e])
+                merged_frozen_mask.append(init_mask[e + 1])
+        else:
+            merged_frozen_mask.append(init_mask[e])
+            merged_frozen_mask.append(init_mask[e + 1])
+    if n_elems < len(init_mask):
+        merged_frozen_mask.append(init_mask[-1])
+    return merged_frozen_mask
+
+
+def print_decode_subframes(subframes):
+    for e in subframes:
+        print(e)
+
+
+def find_decoder_subframes(frozen_mask):
+    stages = power_of_2_int(len(frozen_mask))
+    block_size = 2 ** stages
+
+    lock_mask = np.zeros(block_size, dtype=int)
+    sub_mask = []
+
+    for e in frozen_mask:
+        if e == 1:
+            sub_mask.append(0)
+        else:
+            sub_mask.append(1)
+    sub_mask = np.array(sub_mask, dtype=int)
+
+    for s in range(0, stages):
+        stage_size = 2 ** s
+        mask = np.reshape(sub_mask, (-1, stage_size))
+        lock = np.reshape(lock_mask, (-1, stage_size))
+        for p in range(0, (block_size // stage_size) - 1, 2):
+            l0 = lock[p]
+            l1 = lock[p + 1]
+            first = mask[p]
+            second = mask[p + 1]
+            print(l0, l1)
+            print(first, second)
+            if np.all(l0 == l1):
+                for eq in range(2):
+                    if np.all(first == eq) and np.all(second == eq):
+                        mask[p].fill(eq)
+                        mask[p + 1].fill(eq)
+                        lock[p].fill(s)
+                        lock[p + 1].fill(s)
+
+                if np.all(first == 0) and np.all(second == 2):
+                    mask[p].fill(2)
+                    mask[p + 1].fill(2)
+                    lock[p].fill(s)
+                    lock[p + 1].fill(s)
+
+                if np.all(first == 3) and np.all(second == 1):
+                    mask[p].fill(3)
+                    mask[p + 1].fill(3)
+                    lock[p].fill(s)
+                    lock[p + 1].fill(s)
+
+            if s == 0 and np.all(first == 0) and np.all(second == 1):
+                mask[p].fill(2)
+                mask[p + 1].fill(2)
+                lock[p].fill(s)
+                lock[p + 1].fill(s)
+
+            if s == 1 and np.all(first == 2) and np.all(second == 1):
+                mask[p].fill(3)
+                mask[p + 1].fill(3)
+                lock[p].fill(s)
+                lock[p + 1].fill(s)
+
+        sub_mask = mask.flatten()
+        lock_mask = lock.flatten()
+
+    words = {0: 'ZERO', 1: 'ONE', 2: 'RPT', 3: 'SPC'}
+    ll = lock_mask[0]
+    sub_t = sub_mask[0]
+    for i in range(len(frozen_mask)):
+        v = frozen_mask[i]
+        t = words[sub_mask[i]]
+        l = lock_mask[i]
+        # if i % 8 == 0:
+        #     print
+        if not l == ll or not sub_mask[i] == sub_t:
+            print('--------------------------')
+        ll = l
+        sub_t = sub_mask[i]
+        print('{0:4} lock {1:4} value: {2} in sub {3}'.format(i, 2 ** (l + 1), v, t))
+
+
+def load_file(filename):
+    z_params = []
+    with open(filename, 'r') as f:
+        for line in f:
+            if 'Bhattacharyya:' in line:
+                l = line.split(' ')
+                l = l[10:-2]
+                l = l[0][:-1]
+                l = float(l)
+                z_params.append(l)
+    return np.array(z_params)
+
+
 def main():
+    n = 8
+    m = 2 ** n
+    k = m // 2
+    n_frozen = n - k
     # n = 16
     # k = 8
     # frozenbits = np.zeros(n - k)
@@ -153,12 +330,31 @@ def main():
     # frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
     # print frozenbitposition
 
-    test_enc_dec_chain()
-
+    # test_enc_dec_chain()
     # test_1024_rate_1_code()
-
     # channel_analysis()
 
+    frozen_indices = cc.get_bec_frozen_indices(m, n_frozen, 0.11)
+    frozen_mask = cc.get_frozen_bit_mask(frozen_indices, m)
+    find_decoder_subframes(frozen_mask)
+
+    frozen_mask = np.zeros(m, dtype=int)
+    frozen_mask[frozen_indices] = 1
+
+    # filename = 'channel_z-parameters.txt'
+    # ido = load_file(filename)
+    # ido_frozen = cc.get_frozen_bit_indices_from_z_parameters(ido, k)
+    # ido_mask = np.zeros(m, dtype=int)
+    # ido_mask[ido_frozen] = 1
+    #
+    #
+    # plt.plot(ido_mask)
+    # plt.plot(frozen_mask)
+    # for i in range(m):
+    #     if not ido_mask[i] == frozen_mask[i]:
+    #         plt.axvline(i, color='r')
+    # plt.show()
+
 
 if __name__ == '__main__':
     main()
\ No newline at end of file
diff --git a/gr-fec/python/fec/qa_polar_decoder_sc.py b/gr-fec/python/fec/qa_polar_decoder_sc.py
index 1e7cd25e26..030142d6a6 100644
--- a/gr-fec/python/fec/qa_polar_decoder_sc.py
+++ b/gr-fec/python/fec/qa_polar_decoder_sc.py
@@ -19,24 +19,20 @@
 # the Free Software Foundation, Inc., 51 Franklin Street,
 # Boston, MA 02110-1301, USA.
 #
-from Crypto.Cipher._AES import block_size
 
 from gnuradio import gr, gr_unittest, blocks
 import fec_swig as fec
-from _qa_helper import _qa_helper
-import numpy as np
-import os
 
-from extended_encoder import extended_encoder
+import numpy as np
 from extended_decoder import extended_decoder
 from polar.encoder import PolarEncoder
-from polar.decoder import PolarDecoder
 import polar.channel_construction as cc
-from polar.helper_functions import bit_reverse_vector
 
+# import os
 # print('PID:', os.getpid())
 # raw_input('tell me smth')
 
+
 class test_polar_decoder_sc(gr_unittest.TestCase):
 
     def setUp(self):
@@ -46,13 +42,12 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
         self.tb = None
 
     def test_001_setup(self):
-        is_packed = False
         block_size = 16
         num_info_bits = 8
         frozen_bit_positions = np.arange(block_size - num_info_bits)
         frozen_bit_values = np.array([],)
 
-        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
 
         self.assertEqual(num_info_bits, polar_decoder.get_output_size())
         self.assertEqual(block_size, polar_decoder.get_input_size())
@@ -60,8 +55,6 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
         self.assertFalse(polar_decoder.set_frame_size(10))
 
     def test_002_one_vector(self):
-        print "test_002_one_vector"
-        is_packed = False
         block_power = 10
         block_size = 2 ** block_power
         num_info_bits = 2 ** (block_power - 1)
@@ -71,7 +64,7 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
 
         bits, gr_data = self.generate_test_data(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, 1, True)
 
-        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
         src = blocks.vector_source_f(gr_data, False)
         dec_block = extended_decoder(polar_decoder, None)
         snk = blocks.vector_sink_b(1)
@@ -81,17 +74,10 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
         self.tb.run()
 
         res = np.array(snk.data()).astype(dtype=int)
-
-        print("input:", gr_data.astype(dtype=int))
-        print("ref  :", bits)
-        print("res  :", res)
-
         self.assertTupleEqual(tuple(res), tuple(bits))
 
     def test_003_stream(self):
-        print "test_003_stream"
         nframes = 3
-        is_packed = False
         block_power = 8
         block_size = 2 ** block_power
         num_info_bits = 2 ** (block_power - 1)
@@ -101,7 +87,7 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
 
         bits, gr_data = self.generate_test_data(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, nframes, False)
 
-        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc.make(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
         src = blocks.vector_source_f(gr_data, False)
         dec_block = extended_decoder(polar_decoder, None)
         snk = blocks.vector_sink_b(1)
@@ -111,11 +97,6 @@ class test_polar_decoder_sc(gr_unittest.TestCase):
         self.tb.run()
 
         res = np.array(snk.data()).astype(dtype=int)
-
-        print("input:", gr_data.astype(dtype=int))
-        print("ref  :", bits)
-        print("res  :", res)
-
         self.assertTupleEqual(tuple(res), tuple(bits))
 
     def generate_test_data(self, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, nframes, onlyones):
diff --git a/gr-fec/python/fec/qa_polar_decoder_sc_list.py b/gr-fec/python/fec/qa_polar_decoder_sc_list.py
index 3aefd0f478..6b1fe3d431 100644
--- a/gr-fec/python/fec/qa_polar_decoder_sc_list.py
+++ b/gr-fec/python/fec/qa_polar_decoder_sc_list.py
@@ -23,15 +23,12 @@
 from gnuradio import gr, gr_unittest, blocks
 import fec_swig as fec
 import numpy as np
-import os
 
-from extended_encoder import extended_encoder
 from extended_decoder import extended_decoder
 from polar.encoder import PolarEncoder
-from polar.decoder import PolarDecoder
 import polar.channel_construction as cc
 
-
+# import os
 # print('PID:', os.getpid())
 # raw_input('tell me smth')
 
@@ -45,14 +42,13 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
         self.tb = None
 
     def test_001_setup(self):
-        is_packed = False
         block_size = 16
         num_info_bits = 8
         max_list_size = 4
         frozen_bit_positions = np.arange(block_size - num_info_bits)
         frozen_bit_values = np.array([],)
 
-        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
 
         self.assertEqual(num_info_bits, polar_decoder.get_output_size())
         self.assertEqual(block_size, polar_decoder.get_input_size())
@@ -61,7 +57,6 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
 
     def test_002_one_vector(self):
         print "test_002_one_vector"
-        is_packed = False
         expo = 6
         block_size = 2 ** expo
         num_info_bits = 2 ** (expo - 1)
@@ -69,19 +64,13 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
         num_frozen_bits = block_size - num_info_bits
         frozen_bit_positions = cc.frozen_bit_positions(block_size, num_info_bits, 0.0)
         frozen_bit_values = np.array([0] * num_frozen_bits,)
-        print(frozen_bit_positions)
-
-        python_decoder = PolarDecoder(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
 
-        # data = np.ones(block_size, dtype=int)
         bits = np.random.randint(2, size=num_info_bits)
-        # bits = np.ones(num_info_bits, dtype=int)
         encoder = PolarEncoder(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
         data = encoder.encode(bits)
-        # data = np.array([0, 1, 1, 0, 1, 0, 1, 0], dtype=int)
         gr_data = 2.0 * data - 1.0
 
-        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
         src = blocks.vector_source_f(gr_data, False)
         dec_block = extended_decoder(polar_decoder, None)
         snk = blocks.vector_sink_b(1)
@@ -92,19 +81,16 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
 
         res = np.array(snk.data()).astype(dtype=int)
 
-        ref = python_decoder.decode(data)
+        print("\ninput -> result -> bits")
+        print(data)
+        print(res)
+        print(bits)
 
-        print("input:", data)
-        print("res  :", res)
-        print("ref  :", ref)
-        print("bits :", bits)
-
-        self.assertTupleEqual(tuple(res), tuple(ref))
+        self.assertTupleEqual(tuple(res), tuple(bits))
 
     def test_003_stream(self):
         print "test_003_stream"
         nframes = 5
-        is_packed = False
         expo = 8
         block_size = 2 ** expo
         num_info_bits = 2 ** (expo - 1)
@@ -112,11 +98,9 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
         num_frozen_bits = block_size - num_info_bits
         frozen_bit_positions = cc.frozen_bit_positions(block_size, num_info_bits, 0.0)
         frozen_bit_values = np.array([0] * num_frozen_bits,)
-        print(frozen_bit_positions)
 
         encoder = PolarEncoder(block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
 
-        # data = np.ones(block_size, dtype=int)
         ref = np.array([], dtype=int)
         data = np.array([], dtype=int)
         for i in range(nframes):
@@ -124,13 +108,9 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
             d = encoder.encode(b)
             data = np.append(data, d)
             ref = np.append(ref, b)
-
-        # bits = np.ones(num_info_bits, dtype=int)
-        # data = encoder.encode(bits)
-        # data = np.array([0, 1, 1, 0, 1, 0, 1, 0], dtype=int)
         gr_data = 2.0 * data - 1.0
 
-        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values, is_packed)
+        polar_decoder = fec.polar_decoder_sc_list.make(max_list_size, block_size, num_info_bits, frozen_bit_positions, frozen_bit_values)
         src = blocks.vector_source_f(gr_data, False)
         dec_block = extended_decoder(polar_decoder, None)
         snk = blocks.vector_sink_b(1)
@@ -140,17 +120,9 @@ class test_polar_decoder_sc_list(gr_unittest.TestCase):
         self.tb.run()
 
         res = np.array(snk.data()).astype(dtype=int)
-
-
-        print("input:", data)
-        print("res  :", res)
-        print("ref  :", ref)
-
         self.assertTupleEqual(tuple(res), tuple(ref))
 
 
-
-
 if __name__ == '__main__':
     gr_unittest.run(test_polar_decoder_sc_list)
 
diff --git a/gr-fec/python/fec/qa_polar_encoder.py b/gr-fec/python/fec/qa_polar_encoder.py
index 90190cd719..22d9b11fae 100644
--- a/gr-fec/python/fec/qa_polar_encoder.py
+++ b/gr-fec/python/fec/qa_polar_encoder.py
@@ -101,12 +101,10 @@ class test_polar_encoder(gr_unittest.TestCase):
         self.tb.run()
 
         res = np.array(snk.data()).astype(dtype=int)
-
-        print(res)
-        print(ref)
         self.assertTupleEqual(tuple(res), tuple(ref))
 
     def get_test_data(self, block_size, num_info_bits, num_blocks, is_packed):
+        # helper function to set up test data and together with encoder object.
         num_frozen_bits = block_size - num_info_bits
         frozen_bit_positions = cc.frozen_bit_positions(block_size, num_info_bits, 0.0)
         frozen_bit_values = np.array([0] * num_frozen_bits,)
@@ -122,10 +120,6 @@ class test_polar_encoder(gr_unittest.TestCase):
         return data, ref, polar_encoder
 
 
-
-
-
-
 if __name__ == '__main__':
     gr_unittest.run(test_polar_encoder)
 
-- 
cgit v1.2.3