From a0d13b42bfb3fd081d77e9d73cf4db9695a6d88b Mon Sep 17 00:00:00 2001
From: trondeau <trondeau@221aa14e-8319-0410-a670-987f0aec2ac5>
Date: Wed, 12 Aug 2009 03:39:03 +0000
Subject: Merging trondeau/pfb r11249:11581 into trunk. This adds a few
 polyphase filterbank implementations that do (integer) decimation, (integer)
 interpolation, arbitrary resampling, and channelizing.
 gnuradio-example/python/pfb includes a number of different examples of how to
 use these blocks.

git-svn-id: http://gnuradio.org/svn/gnuradio/trunk@11583 221aa14e-8319-0410-a670-987f0aec2ac5
---
 gnuradio-examples/python/Makefile.am             |   1 +
 gnuradio-examples/python/pfb/Makefile.am         |  31 ++++
 gnuradio-examples/python/pfb/channelize.py       | 177 ++++++++++++++++++
 gnuradio-examples/python/pfb/chirp_channelize.py | 192 +++++++++++++++++++
 gnuradio-examples/python/pfb/decimate.py         | 171 +++++++++++++++++
 gnuradio-examples/python/pfb/fmtest.py           | 197 ++++++++++++++++++++
 gnuradio-examples/python/pfb/interpolate.py      | 226 +++++++++++++++++++++++
 7 files changed, 995 insertions(+)
 create mode 100644 gnuradio-examples/python/pfb/Makefile.am
 create mode 100755 gnuradio-examples/python/pfb/channelize.py
 create mode 100755 gnuradio-examples/python/pfb/chirp_channelize.py
 create mode 100755 gnuradio-examples/python/pfb/decimate.py
 create mode 100755 gnuradio-examples/python/pfb/fmtest.py
 create mode 100755 gnuradio-examples/python/pfb/interpolate.py

(limited to 'gnuradio-examples/python')

diff --git a/gnuradio-examples/python/Makefile.am b/gnuradio-examples/python/Makefile.am
index 3a1acf51da..ea03b438f0 100644
--- a/gnuradio-examples/python/Makefile.am
+++ b/gnuradio-examples/python/Makefile.am
@@ -32,5 +32,6 @@ SUBDIRS = \
 	multi_usrp \
 	network \
 	ofdm \
+	pfb \
 	usrp \
 	usrp2
diff --git a/gnuradio-examples/python/pfb/Makefile.am b/gnuradio-examples/python/pfb/Makefile.am
new file mode 100644
index 0000000000..4aa9248ead
--- /dev/null
+++ b/gnuradio-examples/python/pfb/Makefile.am
@@ -0,0 +1,31 @@
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+include $(top_srcdir)/Makefile.common
+
+ourdatadir = $(exampledir)/pfb
+
+dist_ourdata_SCRIPTS =		\
+	channelize.py		\
+	chirp_channelize.py	\
+	decimate.py		\
+	interpolate.py		\
+	fmtest.py
diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py
new file mode 100755
index 0000000000..bc83fae273
--- /dev/null
+++ b/gnuradio-examples/python/pfb/channelize.py
@@ -0,0 +1,177 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, blks2
+import os, time
+import scipy, pylab
+from scipy import fftpack
+from pylab import mlab
+
+class pfb_top_block(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._N = 2000000        # number of samples to use
+        self._fs = 9000          # initial sampling rate
+        self._M = 9              # Number of channels to channelize
+
+        # Create a set of taps for the PFB channelizer
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50, 
+                                          attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
+        print "Number of taps:     ", len(self._taps)
+        print "Number of channels: ", self._M
+        print "Taps per channel:   ", tpc
+        
+        # Create a set of signals at different frequencies
+        #   freqs lists the frequencies of the signals that get stored 
+        #   in the list "signals", which then get summed together
+        self.signals = list()
+        self.add = gr.add_cc()
+        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
+        for i in xrange(len(freqs)):
+            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
+            self.connect(self.signals[i], (self.add,i))
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the channelizer filter
+        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+        # Construct a vector sink for the input signal to the channelizer
+        self.snk_i = gr.vector_sink_c()
+
+        # Connect the blocks
+        self.connect(self.add, self.head, self.pfb)
+        self.connect(self.add, self.snk_i)
+
+        # Create a vector sink for each of M output channels of the filter and connect it
+        self.snks = list()
+        for i in xrange(self._M):
+            self.snks.append(gr.vector_sink_c())
+            self.connect((self.pfb, i), self.snks[i])
+                             
+
+def main():
+    tstart = time.time()
+    
+    tb = pfb_top_block()
+    tb.run()
+
+    tend = time.time()
+    print "Run time: %f" % (tend - tstart)
+
+    if 1:
+        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+        
+        Ns = 1000
+        Ne = 10000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+        fs = tb._fs
+
+        # Plot the input signal on its own figure
+        d = tb.snk_i.data()[Ns:Ne]
+        spin_f = fig_in.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        pin_f = spin_f.plot(f_in, X_in, "b")
+        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
+        spin_f.set_ylim([-200.0, 50.0]) 
+
+        spin_f.set_title("Input Signal", weight="bold")
+        spin_f.set_xlabel("Frequency (Hz)")
+        spin_f.set_ylabel("Power (dBW)")
+
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        spin_t = fig_in.add_subplot(2, 1, 2)
+        pin_t = spin_t.plot(t_in, x_in.real, "b")
+        pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+        spin_t.set_xlabel("Time (s)")
+        spin_t.set_ylabel("Amplitude")
+
+        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+        Nrows = int(scipy.floor(tb._M / Ncols))
+        if(tb._M % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
+        fs_o = tb._fs / tb._M
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
+        for i in xrange(len(tb.snks)):
+            # remove issues with the transients at the beginning
+            # also remove some corruption at the end of the stream
+            #    this is a bug, probably due to the corner cases
+            d = tb.snks[i].data()[Ns:Ne]
+
+            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                              window = lambda d: d*winfunc(fftlen),
+                              scale_by_freq=True)
+            X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+            f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+            p2_f = sp1_f.plot(f_o, X_o, "b")
+            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
+            sp1_f.set_ylim([-200.0, 50.0]) 
+
+            sp1_f.set_title(("Channel %d" % i), weight="bold")
+            sp1_f.set_xlabel("Frequency (Hz)")
+            sp1_f.set_ylabel("Power (dBW)")
+
+            x_o = scipy.array(d)
+            t_o = scipy.arange(0, Tmax_o, Ts_o)
+            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
+            p2_o = sp2_o.plot(t_o, x_o.real, "b")
+            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_o.set_ylim([-2, 2]) 
+
+            sp2_o.set_title(("Channel %d" % i), weight="bold")
+            sp2_o.set_xlabel("Time (s)")
+            sp2_o.set_ylabel("Amplitude")
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    try:
+        main()
+    except KeyboardInterrupt:
+        pass
+    
diff --git a/gnuradio-examples/python/pfb/chirp_channelize.py b/gnuradio-examples/python/pfb/chirp_channelize.py
new file mode 100755
index 0000000000..edebf5f594
--- /dev/null
+++ b/gnuradio-examples/python/pfb/chirp_channelize.py
@@ -0,0 +1,192 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, blks2
+import os, time
+import scipy, pylab
+from scipy import fftpack
+from pylab import mlab
+
+class pfb_top_block(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._N = 200000         # number of samples to use
+        self._fs = 9000          # initial sampling rate
+        self._M = 9              # Number of channels to channelize
+
+        # Create a set of taps for the PFB channelizer
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20, 
+                                          attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
+        print "Number of taps:     ", len(self._taps)
+        print "Number of channels: ", self._M
+        print "Taps per channel:   ", tpc
+
+        repeated = True
+        if(repeated):
+            self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
+        else:
+            amp = 100
+            data = scipy.arange(0, amp, amp/float(self._N))
+            self.vco_input = gr.vector_source_f(data, False)
+            
+        # Build a VCO controlled by either the sinusoid or single chirp tone
+        # Then convert this to a complex signal
+        self.vco = gr.vco_f(self._fs, 225, 1)
+        self.f2c = gr.float_to_complex()
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the channelizer filter
+        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+        # Construct a vector sink for the input signal to the channelizer
+        self.snk_i = gr.vector_sink_c()
+
+        # Connect the blocks
+        self.connect(self.vco_input, self.vco, self.f2c)
+        self.connect(self.f2c, self.head, self.pfb)
+        self.connect(self.f2c, self.snk_i)
+
+        # Create a vector sink for each of M output channels of the filter and connect it
+        self.snks = list()
+        for i in xrange(self._M):
+            self.snks.append(gr.vector_sink_c())
+            self.connect((self.pfb, i), self.snks[i])
+                             
+
+def main():
+    tstart = time.time()
+    
+    tb = pfb_top_block()
+    tb.run()
+
+    tend = time.time()
+    print "Run time: %f" % (tend - tstart)
+
+    if 1:
+        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+        fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
+        
+        Ns = 650
+        Ne = 20000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+        fs = tb._fs
+
+        # Plot the input signal on its own figure
+        d = tb.snk_i.data()[Ns:Ne]
+        spin_f = fig_in.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        pin_f = spin_f.plot(f_in, X_in, "b")
+        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
+        spin_f.set_ylim([-200.0, 50.0]) 
+
+        spin_f.set_title("Input Signal", weight="bold")
+        spin_f.set_xlabel("Frequency (Hz)")
+        spin_f.set_ylabel("Power (dBW)")
+
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        spin_t = fig_in.add_subplot(2, 1, 2)
+        pin_t = spin_t.plot(t_in, x_in.real, "b")
+        pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+        spin_t.set_xlabel("Time (s)")
+        spin_t.set_ylabel("Amplitude")
+
+        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+        Nrows = int(scipy.floor(tb._M / Ncols))
+        if(tb._M % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
+        fs_o = tb._fs / tb._M
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
+        for i in xrange(len(tb.snks)):
+            # remove issues with the transients at the beginning
+            # also remove some corruption at the end of the stream
+            #    this is a bug, probably due to the corner cases
+            d = tb.snks[i].data()[Ns:Ne]
+
+            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                              window = lambda d: d*winfunc(fftlen),
+                              scale_by_freq=True)
+            X_o = 10.0*scipy.log10(abs(X))
+            f_o = freq
+            p2_f = sp1_f.plot(f_o, X_o, "b")
+            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
+            sp1_f.set_ylim([-200.0, 50.0]) 
+
+            sp1_f.set_title(("Channel %d" % i), weight="bold")
+            sp1_f.set_xlabel("Frequency (Hz)")
+            sp1_f.set_ylabel("Power (dBW)")
+
+            x_o = scipy.array(d)
+            t_o = scipy.arange(0, Tmax_o, Ts_o)
+            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
+            p2_o = sp2_o.plot(t_o, x_o.real, "b")
+            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_o.set_ylim([-2, 2]) 
+
+            sp2_o.set_title(("Channel %d" % i), weight="bold")
+            sp2_o.set_xlabel("Time (s)")
+            sp2_o.set_ylabel("Amplitude")
+
+
+            sp3 = fig3.add_subplot(1,1,1)
+            p3 = sp3.plot(t_o, x_o.real)
+            sp3.set_xlim([min(t_o), max(t_o)+1]) 
+            sp3.set_ylim([-2, 2]) 
+
+        sp3.set_title("All Channels")
+        sp3.set_xlabel("Time (s)")
+        sp3.set_ylabel("Amplitude") 
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    try:
+        main()
+    except KeyboardInterrupt:
+        pass
+    
diff --git a/gnuradio-examples/python/pfb/decimate.py b/gnuradio-examples/python/pfb/decimate.py
new file mode 100755
index 0000000000..cb5d61b72c
--- /dev/null
+++ b/gnuradio-examples/python/pfb/decimate.py
@@ -0,0 +1,171 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, blks2
+import os
+import scipy, pylab
+from scipy import fftpack
+from pylab import mlab
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._N = 10000000      # number of samples to use
+        self._fs = 10000        # initial sampling rate
+        self._decim = 20        # Decimation rate
+        
+        # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
+                                          attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._decim))
+        print "Number of taps:     ", len(self._taps)
+        print "Number of filters:  ", self._decim
+        print "Taps per channel:   ", tpc
+        
+        # Build the input signal source
+        # We create a list of freqs, and a sine wave is generated and added to the source
+        # for each one of these frequencies.
+        self.signals = list()
+        self.add = gr.add_cc()
+        freqs = [10, 20, 2040]
+        for i in xrange(len(freqs)):
+            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
+            self.connect(self.signals[i], (self.add,i))
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._N)
+        
+        # Construct a PFB decimator filter
+        self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
+
+        # Construct a standard FIR decimating filter
+        self.dec = gr.fir_filter_ccf(self._decim, self._taps)
+
+        self.snk_i = gr.vector_sink_c()
+
+        # Connect the blocks
+        self.connect(self.add, self.head, self.pfb)
+        self.connect(self.add, self.snk_i)
+
+        # Create the sink for the decimated siganl
+        self.snk = gr.vector_sink_c()
+        self.connect(self.pfb, self.snk)
+                             
+
+def main():
+    tb = pfb_top_block()
+
+    tstart = time.time()    
+    tb.run()
+    tend = time.time()
+    print "Run time: %f" % (tend - tstart)
+
+    if 1:
+        fig1 = pylab.figure(1, figsize=(16,9))
+        fig2 = pylab.figure(2, figsize=(16,9))
+        
+        Ns = 10000
+        Ne = 10000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+        fs = tb._fs
+
+        # Plot the input to the decimator
+
+        d = tb.snk_i.data()[Ns:Ns+Ne]
+        sp1_f = fig1.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        p1_f = sp1_f.plot(f_in, X_in, "b")
+        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
+        sp1_f.set_ylim([-200.0, 50.0]) 
+
+        sp1_f.set_title("Input Signal", weight="bold")
+        sp1_f.set_xlabel("Frequency (Hz)")
+        sp1_f.set_ylabel("Power (dBW)")
+        
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        sp1_t = fig1.add_subplot(2, 1, 2)
+        p1_t = sp1_t.plot(t_in, x_in.real, "b")
+        p1_t = sp1_t.plot(t_in, x_in.imag, "r")
+        sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
+
+        sp1_t.set_xlabel("Time (s)")
+        sp1_t.set_ylabel("Amplitude")
+
+        
+        # Plot the output of the decimator
+        fs_o = tb._fs / tb._decim
+
+        sp2_f = fig2.add_subplot(2, 1, 1)
+        d = tb.snk.data()[Ns:Ns+Ne]
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+        p2_f = sp2_f.plot(f_o, X_o, "b")
+        sp2_f.set_xlim([min(f_o), max(f_o)+1]) 
+        sp2_f.set_ylim([-200.0, 50.0]) 
+
+        sp2_f.set_title("PFB Decimated Signal", weight="bold")
+        sp2_f.set_xlabel("Frequency (Hz)")
+        sp2_f.set_ylabel("Power (dBW)")
+        
+
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
+
+        x_o = scipy.array(d)
+        t_o = scipy.arange(0, Tmax_o, Ts_o)
+        sp2_t = fig2.add_subplot(2, 1, 2)
+        p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
+        p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+        sp2_t.set_ylim([-2.5, 2.5])
+
+        sp2_t.set_xlabel("Time (s)")
+        sp2_t.set_ylabel("Amplitude")
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    try:
+        main()
+    except KeyboardInterrupt:
+        pass
+    
diff --git a/gnuradio-examples/python/pfb/fmtest.py b/gnuradio-examples/python/pfb/fmtest.py
new file mode 100755
index 0000000000..97df0e0f56
--- /dev/null
+++ b/gnuradio-examples/python/pfb/fmtest.py
@@ -0,0 +1,197 @@
+#!/usr/bin/env python
+#
+
+
+from gnuradio import gr, eng_notation
+from gnuradio import blks2
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+import math, time, sys, scipy, pylab
+from scipy import fftpack
+
+class fmtx(gr.hier_block2):
+    def __init__(self, lo_freq, audio_rate, if_rate):
+
+        gr.hier_block2.__init__(self, "build_fm",
+                                gr.io_signature(1, 1, gr.sizeof_float),      # Input signature
+                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
+
+        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
+        
+        # Local oscillator
+        lo = gr.sig_source_c (if_rate,        # sample rate
+                              gr.GR_SIN_WAVE, # waveform type
+                              lo_freq,        #frequency
+                              1.0,            # amplitude
+                              0)              # DC Offset
+        mixer = gr.multiply_cc ()
+    
+        self.connect (self, fmtx, (mixer, 0))
+        self.connect (lo, (mixer, 1))
+        self.connect (mixer, self)
+
+class fmtest(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._nsamples = 1000000
+        self._audio_rate = 8000
+
+        # Set up N channels with their own baseband and IF frequencies
+        self._N = 5
+        chspacing = 16000
+        freq = [10, 20, 30, 40, 50]
+        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
+
+        self._if_rate = 4*self._N*self._audio_rate
+
+        # Create a signal source and frequency modulate it
+        self.sum = gr.add_cc ()
+        for n in xrange(self._N):
+            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
+            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
+            self.connect(sig, fm)
+            self.connect(fm, (self.sum, n))
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
+        self.snk_tx = gr.vector_sink_c()
+        self.channel = blks2.channel_model(0.1)
+
+        self.connect(self.sum, self.head, self.channel, self.snk_tx)
+
+
+        # Design the channlizer
+        self._M = 10
+        bw = chspacing/2.0
+        t_bw = chspacing/10.0
+        self._chan_rate = self._if_rate / self._M
+        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw, 
+                                          attenuation_dB=100,
+                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
+        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
+
+        print "Number of taps:     ", len(self._taps)
+        print "Number of channels: ", self._M
+        print "Taps per channel:   ", tpc
+        
+        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+        
+        self.connect(self.channel, self.pfb)
+        
+        # Create a file sink for each of M output channels of the filter and connect it
+        self.fmdet = list()
+        self.squelch = list()
+        self.snks = list()
+        for i in xrange(self._M):
+            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
+            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
+            self.snks.append(gr.vector_sink_f())
+            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
+
+    def num_tx_channels(self):
+        return self._N
+
+    def num_rx_channels(self):
+        return self._M
+
+def main():
+
+    fm = fmtest()
+
+    tstart = time.time()
+    fm.run()
+    tend = time.time()
+
+    if 1:
+        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
+        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
+        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
+
+        Ns = 10000
+        Ne = 100000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+
+        # Plot transmitted signal
+        fs = fm._if_rate
+
+        d = fm.snk_tx.data()[Ns:Ns+Ne]
+        sp1_f = fig1.add_subplot(2, 1, 1)
+
+        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                           window = lambda d: d*winfunc(fftlen),
+                           visible=False)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        p1_f = sp1_f.plot(f_in, X_in, "b")
+        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
+        sp1_f.set_ylim([-120.0, 20.0]) 
+
+        sp1_f.set_title("Input Signal", weight="bold")
+        sp1_f.set_xlabel("Frequency (Hz)")
+        sp1_f.set_ylabel("Power (dBW)")
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        sp1_t = fig1.add_subplot(2, 1, 2)
+        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
+        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
+        sp1_t.set_ylim([-5, 5])
+
+        # Set up the number of rows and columns for plotting the subfigures
+        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
+        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
+        if(fm.num_rx_channels() % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
+        fs_o = fm._audio_rate
+        for i in xrange(len(fm.snks)):
+            # remove issues with the transients at the beginning
+            # also remove some corruption at the end of the stream
+            #    this is a bug, probably due to the corner cases
+            d = fm.snks[i].data()[Ns:Ne]
+
+            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                               window = lambda d: d*winfunc(fftlen),
+                               visible=False)
+            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+            X_o = 10.0*scipy.log10(abs(X))
+            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
+            p2_f = sp2_f.plot(f_o, X_o, "b")
+            sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) 
+            sp2_f.set_ylim([-120.0, 20.0]) 
+            sp2_f.grid(True)
+
+            sp2_f.set_title(("Channel %d" % i), weight="bold")
+            sp2_f.set_xlabel("Frequency (kHz)")
+            sp2_f.set_ylabel("Power (dBW)")
+
+
+            Ts = 1.0/fs_o
+            Tmax = len(d)*Ts
+            t_o = scipy.arange(0, Tmax, Ts)
+
+            x_t = scipy.array(d)
+            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
+            p2_t = sp2_t.plot(t_o, x_t.real, "b")
+            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
+            sp2_t.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_t.set_ylim([-1, 1]) 
+
+            sp2_t.set_xlabel("Time (s)")
+            sp2_t.set_ylabel("Amplitude")
+
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    main()
diff --git a/gnuradio-examples/python/pfb/interpolate.py b/gnuradio-examples/python/pfb/interpolate.py
new file mode 100755
index 0000000000..a7a2522f82
--- /dev/null
+++ b/gnuradio-examples/python/pfb/interpolate.py
@@ -0,0 +1,226 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, blks2
+import os
+import scipy, pylab
+from scipy import fftpack
+from pylab import mlab
+import time
+
+#print os.getpid()
+#raw_input()
+
+class pfb_top_block(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._N = 100000        # number of samples to use
+        self._fs = 2000         # initial sampling rate
+        self._interp = 5        # Interpolation rate for PFB interpolator
+        self._ainterp = 5.5       # Resampling rate for the PFB arbitrary resampler
+
+        # Frequencies of the signals we construct 
+        freq1 = 100
+        freq2 = 200
+
+        # Create a set of taps for the PFB interpolator
+        # This is based on the post-interpolation sample rate
+        self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, 
+                                          attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Create a set of taps for the PFB arbitrary resampler
+        # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
+        # and larger numbers will reduce these even farther
+        # The taps in this filter are based on a sampling rate of the filter size since it acts
+        # internally as an interpolator.
+        flt_size = 32
+        self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, 
+                                           attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._interp))
+        print "Number of taps:     ", len(self._taps)
+        print "Number of filters:  ", self._interp
+        print "Taps per channel:   ", tpc
+
+        # Create a couple of signals at different frequencies
+        self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
+        self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
+        self.signal = gr.add_cc()
+        
+        self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the PFB interpolator filter
+        self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
+
+        # Construct the PFB arbitrary resampler filter
+        self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
+        self.snk_i = gr.vector_sink_c()
+
+        #self.pfb_ar.pfb.print_taps()
+        #self.pfb.pfb.print_taps()
+        
+        # Connect the blocks
+        self.connect(self.signal1, self.head, (self.signal,0))
+        self.connect(self.signal2, (self.signal,1))
+        self.connect(self.signal, self.pfb)
+        self.connect(self.signal, self.pfb_ar)
+        self.connect(self.signal, self.snk_i)
+
+        # Create the sink for the interpolated signals
+        self.snk1 = gr.vector_sink_c()
+        self.snk2 = gr.vector_sink_c()
+        self.connect(self.pfb, self.snk1)
+        self.connect(self.pfb_ar, self.snk2)
+                             
+
+def main():
+    tb = pfb_top_block()
+
+    tstart = time.time()
+    tb.run()
+    tend = time.time()
+    print "Run time: %f" % (tend - tstart)
+
+
+    if 1:
+        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
+        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
+        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
+        
+        Ns = 10000
+        Ne = 10000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+
+        # Plot input signal
+        fs = tb._fs
+
+        d = tb.snk_i.data()[Ns:Ns+Ne]
+        sp1_f = fig1.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        p1_f = sp1_f.plot(f_in, X_in, "b")
+        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
+        sp1_f.set_ylim([-200.0, 50.0]) 
+
+
+        sp1_f.set_title("Input Signal", weight="bold")
+        sp1_f.set_xlabel("Frequency (Hz)")
+        sp1_f.set_ylabel("Power (dBW)")
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        sp1_t = fig1.add_subplot(2, 1, 2)
+        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
+        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
+        sp1_t.set_ylim([-2.5, 2.5])
+
+        sp1_t.set_title("Input Signal", weight="bold")
+        sp1_t.set_xlabel("Time (s)")
+        sp1_t.set_ylabel("Amplitude")
+
+
+        # Plot output of PFB interpolator
+        fs_int = tb._fs*tb._interp
+
+        sp2_f = fig2.add_subplot(2, 1, 1)
+        d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
+        p2_f = sp2_f.plot(f_o, X_o, "b")
+        sp2_f.set_xlim([min(f_o), max(f_o)+1]) 
+        sp2_f.set_ylim([-200.0, 50.0]) 
+
+        sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
+        sp2_f.set_xlabel("Frequency (Hz)")
+        sp2_f.set_ylabel("Power (dBW)")
+
+        Ts_int = 1.0/fs_int
+        Tmax = len(d)*Ts_int
+
+        t_o = scipy.arange(0, Tmax, Ts_int)
+        x_o1 = scipy.array(d)
+        sp2_t = fig2.add_subplot(2, 1, 2)
+        p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
+        #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
+        sp2_t.set_ylim([-2.5, 2.5])
+
+        sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
+        sp2_t.set_xlabel("Time (s)")
+        sp2_t.set_ylabel("Amplitude")
+
+
+        # Plot output of PFB arbitrary resampler
+        fs_aint = tb._fs * tb._ainterp
+
+        sp3_f = fig3.add_subplot(2, 1, 1)
+        d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
+        f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
+        p3_f = sp3_f.plot(f_o, X_o, "b")
+        sp3_f.set_xlim([min(f_o), max(f_o)+1]) 
+        sp3_f.set_ylim([-200.0, 50.0]) 
+
+        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
+        sp3_f.set_xlabel("Frequency (Hz)")
+        sp3_f.set_ylabel("Power (dBW)")
+
+        Ts_aint = 1.0/fs_aint
+        Tmax = len(d)*Ts_aint
+
+        t_o = scipy.arange(0, Tmax, Ts_aint)
+        x_o2 = scipy.array(d)
+        sp3_f = fig3.add_subplot(2, 1, 2)
+        p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
+        p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
+        #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
+        sp3_f.set_ylim([-2.5, 2.5])
+        
+        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
+        sp3_f.set_xlabel("Time (s)")
+        sp3_f.set_ylabel("Amplitude")
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    try:
+        main()
+    except KeyboardInterrupt:
+        pass
+    
-- 
cgit v1.2.3