From faab807cf5e8b4a4c950d1fd8ae6672296fb1ad9 Mon Sep 17 00:00:00 2001
From: Tom Rondeau <trondeau@vt.edu>
Date: Tue, 3 Apr 2012 18:21:52 -0400
Subject: Rework example directories. Gets rid of gnuradio-examples, moves
 these to more appropriate components.

gnuradio-core and grc now have their own examples directories for files directly related to them.
---
 gnuradio-examples/python/pfb/resampler.py | 127 ------------------------------
 1 file changed, 127 deletions(-)
 delete mode 100755 gnuradio-examples/python/pfb/resampler.py

(limited to 'gnuradio-examples/python/pfb/resampler.py')

diff --git a/gnuradio-examples/python/pfb/resampler.py b/gnuradio-examples/python/pfb/resampler.py
deleted file mode 100755
index 7b296ca717..0000000000
--- a/gnuradio-examples/python/pfb/resampler.py
+++ /dev/null
@@ -1,127 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-# 
-# This file is part of GNU Radio
-# 
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-# 
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-# 
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-# 
-
-from gnuradio import gr, blks2
-import sys
-
-try:
-    import scipy
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class mytb(gr.top_block):
-    def __init__(self, fs_in, fs_out, fc, N=10000):
-        gr.top_block.__init__(self)
-        
-        rerate = float(fs_out) / float(fs_in)
-        print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate)
-
-        # Creating our own taps
-        taps = gr.firdes.low_pass_2(32, 32, 0.25, 0.1, 80)
-
-        self.src = gr.sig_source_c(fs_in, gr.GR_SIN_WAVE, fc, 1)
-        #self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1)
-        self.head = gr.head(gr.sizeof_gr_complex, N)
-
-        # A resampler with our taps
-        self.resamp_0 = blks2.pfb_arb_resampler_ccf(rerate, taps,
-                                                    flt_size=32)
-
-        # A resampler that just needs a resampling rate.
-        # Filter is created for us and designed to cover
-        # entire bandwidth of the input signal.
-        # An optional atten=XX rate can be used here to 
-        # specify the out-of-band rejection (default=80).
-        self.resamp_1 = blks2.pfb_arb_resampler_ccf(rerate)
-
-        self.snk_in = gr.vector_sink_c()
-        self.snk_0 = gr.vector_sink_c()
-        self.snk_1 = gr.vector_sink_c()
-
-        self.connect(self.src, self.head, self.snk_in)
-        self.connect(self.head, self.resamp_0, self.snk_0)
-        self.connect(self.head, self.resamp_1, self.snk_1)
-
-def main():
-    fs_in = 8000
-    fs_out = 20000
-    fc = 1000
-    N = 10000
-
-    tb = mytb(fs_in, fs_out, fc, N)
-    tb.run()
-
-
-    # Plot PSD of signals
-    nfftsize = 2048
-    fig1 = pylab.figure(1, figsize=(10,10), facecolor="w")
-    sp1 = fig1.add_subplot(2,1,1)
-    sp1.psd(tb.snk_in.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_in)
-    sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
-    sp1.set_xlim([-fs_in/2, fs_in/2])
-
-    sp2 = fig1.add_subplot(2,1,2)
-    sp2.psd(tb.snk_0.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_out,
-            label="With our filter")
-    sp2.psd(tb.snk_1.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_out,
-            label="With auto-generated filter")
-    sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
-    sp2.set_xlim([-fs_out/2, fs_out/2])
-    sp2.legend()
-
-    # Plot signals in time
-    Ts_in = 1.0/fs_in
-    Ts_out = 1.0/fs_out
-    t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in)
-    t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out)
-
-    fig2 = pylab.figure(2, figsize=(10,10), facecolor="w")
-    sp21 = fig2.add_subplot(2,1,1)
-    sp21.plot(t_in, tb.snk_in.data())
-    sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
-    sp21.set_xlim([t_in[100], t_in[200]])
-
-    sp22 = fig2.add_subplot(2,1,2)
-    sp22.plot(t_out, tb.snk_0.data(),
-              label="With our filter")
-    sp22.plot(t_out, tb.snk_1.data(),
-              label="With auto-generated filter")
-    sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
-    r = float(fs_out)/float(fs_in)
-    sp22.set_xlim([t_out[r * 100], t_out[r * 200]])
-    sp22.legend()
-
-    pylab.show()
-
-if __name__ == "__main__":
-    main()
-
-- 
cgit v1.2.3