From faab807cf5e8b4a4c950d1fd8ae6672296fb1ad9 Mon Sep 17 00:00:00 2001
From: Tom Rondeau <trondeau@vt.edu>
Date: Tue, 3 Apr 2012 18:21:52 -0400
Subject: Rework example directories. Gets rid of gnuradio-examples, moves
 these to more appropriate components.

gnuradio-core and grc now have their own examples directories for files directly related to them.
---
 gnuradio-examples/python/pfb/fmtest.py | 225 ---------------------------------
 1 file changed, 225 deletions(-)
 delete mode 100755 gnuradio-examples/python/pfb/fmtest.py

(limited to 'gnuradio-examples/python/pfb/fmtest.py')

diff --git a/gnuradio-examples/python/pfb/fmtest.py b/gnuradio-examples/python/pfb/fmtest.py
deleted file mode 100755
index 635ee4e9ed..0000000000
--- a/gnuradio-examples/python/pfb/fmtest.py
+++ /dev/null
@@ -1,225 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-# 
-# This file is part of GNU Radio
-# 
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-# 
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-# 
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-# 
-
-from gnuradio import gr, blks2
-import sys, math, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-
-class fmtx(gr.hier_block2):
-    def __init__(self, lo_freq, audio_rate, if_rate):
-
-        gr.hier_block2.__init__(self, "build_fm",
-                                gr.io_signature(1, 1, gr.sizeof_float),      # Input signature
-                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
-
-        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
-        
-        # Local oscillator
-        lo = gr.sig_source_c (if_rate,        # sample rate
-                              gr.GR_SIN_WAVE, # waveform type
-                              lo_freq,        #frequency
-                              1.0,            # amplitude
-                              0)              # DC Offset
-        mixer = gr.multiply_cc ()
-    
-        self.connect (self, fmtx, (mixer, 0))
-        self.connect (lo, (mixer, 1))
-        self.connect (mixer, self)
-
-class fmtest(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._nsamples = 1000000
-        self._audio_rate = 8000
-
-        # Set up N channels with their own baseband and IF frequencies
-        self._N = 5
-        chspacing = 16000
-        freq = [10, 20, 30, 40, 50]
-        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
-
-        self._if_rate = 4*self._N*self._audio_rate
-
-        # Create a signal source and frequency modulate it
-        self.sum = gr.add_cc ()
-        for n in xrange(self._N):
-            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
-            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
-            self.connect(sig, fm)
-            self.connect(fm, (self.sum, n))
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
-        self.snk_tx = gr.vector_sink_c()
-        self.channel = blks2.channel_model(0.1)
-
-        self.connect(self.sum, self.head, self.channel, self.snk_tx)
-
-
-        # Design the channlizer
-        self._M = 10
-        bw = chspacing/2.0
-        t_bw = chspacing/10.0
-        self._chan_rate = self._if_rate / self._M
-        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw, 
-                                          attenuation_dB=100,
-                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
-        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
-
-        print "Number of taps:     ", len(self._taps)
-        print "Number of channels: ", self._M
-        print "Taps per channel:   ", tpc
-        
-        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-        
-        self.connect(self.channel, self.pfb)
-        
-        # Create a file sink for each of M output channels of the filter and connect it
-        self.fmdet = list()
-        self.squelch = list()
-        self.snks = list()
-        for i in xrange(self._M):
-            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
-            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
-            self.snks.append(gr.vector_sink_f())
-            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
-
-    def num_tx_channels(self):
-        return self._N
-
-    def num_rx_channels(self):
-        return self._M
-
-def main():
-
-    fm = fmtest()
-
-    tstart = time.time()
-    fm.run()
-    tend = time.time()
-
-    if 1:
-        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
-        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
-        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
-        Ns = 10000
-        Ne = 100000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-
-        # Plot transmitted signal
-        fs = fm._if_rate
-
-        d = fm.snk_tx.data()[Ns:Ns+Ne]
-        sp1_f = fig1.add_subplot(2, 1, 1)
-
-        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        p1_f = sp1_f.plot(f_in, X_in, "b")
-        sp1_f.set_xlim([min(f_in), max(f_in)+1]) 
-        sp1_f.set_ylim([-120.0, 20.0]) 
-
-        sp1_f.set_title("Input Signal", weight="bold")
-        sp1_f.set_xlabel("Frequency (Hz)")
-        sp1_f.set_ylabel("Power (dBW)")
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-        
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        sp1_t = fig1.add_subplot(2, 1, 2)
-        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
-        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
-        sp1_t.set_ylim([-5, 5])
-
-        # Set up the number of rows and columns for plotting the subfigures
-        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
-        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
-        if(fm.num_rx_channels() % Ncols != 0):
-            Nrows += 1
-
-        # Plot each of the channels outputs. Frequencies on Figure 2 and
-        # time signals on Figure 3
-        fs_o = fm._audio_rate
-        for i in xrange(len(fm.snks)):
-            # remove issues with the transients at the beginning
-            # also remove some corruption at the end of the stream
-            #    this is a bug, probably due to the corner cases
-            d = fm.snks[i].data()[Ns:Ne]
-
-            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                               window = lambda d: d*winfunc(fftlen),
-                               visible=False)
-            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-            X_o = 10.0*scipy.log10(abs(X))
-            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
-            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
-            p2_f = sp2_f.plot(f_o, X_o, "b")
-            sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) 
-            sp2_f.set_ylim([-120.0, 20.0]) 
-            sp2_f.grid(True)
-
-            sp2_f.set_title(("Channel %d" % i), weight="bold")
-            sp2_f.set_xlabel("Frequency (kHz)")
-            sp2_f.set_ylabel("Power (dBW)")
-
-
-            Ts = 1.0/fs_o
-            Tmax = len(d)*Ts
-            t_o = scipy.arange(0, Tmax, Ts)
-
-            x_t = scipy.array(d)
-            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
-            p2_t = sp2_t.plot(t_o, x_t.real, "b")
-            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
-            sp2_t.set_xlim([min(t_o), max(t_o)+1]) 
-            sp2_t.set_ylim([-1, 1]) 
-
-            sp2_t.set_xlabel("Time (s)")
-            sp2_t.set_ylabel("Amplitude")
-
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    main()
-- 
cgit v1.2.3