From faab807cf5e8b4a4c950d1fd8ae6672296fb1ad9 Mon Sep 17 00:00:00 2001
From: Tom Rondeau <trondeau@vt.edu>
Date: Tue, 3 Apr 2012 18:21:52 -0400
Subject: Rework example directories. Gets rid of gnuradio-examples, moves
 these to more appropriate components.

gnuradio-core and grc now have their own examples directories for files directly related to them.
---
 gnuradio-examples/python/pfb/chirp_channelize.py | 203 -----------------------
 1 file changed, 203 deletions(-)
 delete mode 100755 gnuradio-examples/python/pfb/chirp_channelize.py

(limited to 'gnuradio-examples/python/pfb/chirp_channelize.py')

diff --git a/gnuradio-examples/python/pfb/chirp_channelize.py b/gnuradio-examples/python/pfb/chirp_channelize.py
deleted file mode 100755
index 951255d3b0..0000000000
--- a/gnuradio-examples/python/pfb/chirp_channelize.py
+++ /dev/null
@@ -1,203 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-# 
-# This file is part of GNU Radio
-# 
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-# 
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-# 
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-# 
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-    from pylab import mlab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class pfb_top_block(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._N = 200000         # number of samples to use
-        self._fs = 9000          # initial sampling rate
-        self._M = 9              # Number of channels to channelize
-
-        # Create a set of taps for the PFB channelizer
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20, 
-                                          attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Calculate the number of taps per channel for our own information
-        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
-        print "Number of taps:     ", len(self._taps)
-        print "Number of channels: ", self._M
-        print "Taps per channel:   ", tpc
-
-        repeated = True
-        if(repeated):
-            self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
-        else:
-            amp = 100
-            data = scipy.arange(0, amp, amp/float(self._N))
-            self.vco_input = gr.vector_source_f(data, False)
-            
-        # Build a VCO controlled by either the sinusoid or single chirp tone
-        # Then convert this to a complex signal
-        self.vco = gr.vco_f(self._fs, 225, 1)
-        self.f2c = gr.float_to_complex()
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
-        # Construct the channelizer filter
-        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
-        # Construct a vector sink for the input signal to the channelizer
-        self.snk_i = gr.vector_sink_c()
-
-        # Connect the blocks
-        self.connect(self.vco_input, self.vco, self.f2c)
-        self.connect(self.f2c, self.head, self.pfb)
-        self.connect(self.f2c, self.snk_i)
-
-        # Create a vector sink for each of M output channels of the filter and connect it
-        self.snks = list()
-        for i in xrange(self._M):
-            self.snks.append(gr.vector_sink_c())
-            self.connect((self.pfb, i), self.snks[i])
-                             
-
-def main():
-    tstart = time.time()
-    
-    tb = pfb_top_block()
-    tb.run()
-
-    tend = time.time()
-    print "Run time: %f" % (tend - tstart)
-
-    if 1:
-        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
-        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
-        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
-        fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
-        
-        Ns = 650
-        Ne = 20000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-        fs = tb._fs
-
-        # Plot the input signal on its own figure
-        d = tb.snk_i.data()[Ns:Ne]
-        spin_f = fig_in.add_subplot(2, 1, 1)
-
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        pin_f = spin_f.plot(f_in, X_in, "b")
-        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
-        spin_f.set_ylim([-200.0, 50.0]) 
-
-        spin_f.set_title("Input Signal", weight="bold")
-        spin_f.set_xlabel("Frequency (Hz)")
-        spin_f.set_ylabel("Power (dBW)")
-
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-        
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        spin_t = fig_in.add_subplot(2, 1, 2)
-        pin_t = spin_t.plot(t_in, x_in.real, "b")
-        pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
-        spin_t.set_xlabel("Time (s)")
-        spin_t.set_ylabel("Amplitude")
-
-        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
-        Nrows = int(scipy.floor(tb._M / Ncols))
-        if(tb._M % Ncols != 0):
-            Nrows += 1
-
-        # Plot each of the channels outputs. Frequencies on Figure 2 and
-        # time signals on Figure 3
-        fs_o = tb._fs / tb._M
-        Ts_o = 1.0/fs_o
-        Tmax_o = len(d)*Ts_o
-        for i in xrange(len(tb.snks)):
-            # remove issues with the transients at the beginning
-            # also remove some corruption at the end of the stream
-            #    this is a bug, probably due to the corner cases
-            d = tb.snks[i].data()[Ns:Ne]
-
-            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                              window = lambda d: d*winfunc(fftlen),
-                              scale_by_freq=True)
-            X_o = 10.0*scipy.log10(abs(X))
-            f_o = freq
-            p2_f = sp1_f.plot(f_o, X_o, "b")
-            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
-            sp1_f.set_ylim([-200.0, 50.0]) 
-
-            sp1_f.set_title(("Channel %d" % i), weight="bold")
-            sp1_f.set_xlabel("Frequency (Hz)")
-            sp1_f.set_ylabel("Power (dBW)")
-
-            x_o = scipy.array(d)
-            t_o = scipy.arange(0, Tmax_o, Ts_o)
-            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
-            p2_o = sp2_o.plot(t_o, x_o.real, "b")
-            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
-            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
-            sp2_o.set_ylim([-2, 2]) 
-
-            sp2_o.set_title(("Channel %d" % i), weight="bold")
-            sp2_o.set_xlabel("Time (s)")
-            sp2_o.set_ylabel("Amplitude")
-
-
-            sp3 = fig3.add_subplot(1,1,1)
-            p3 = sp3.plot(t_o, x_o.real)
-            sp3.set_xlim([min(t_o), max(t_o)+1]) 
-            sp3.set_ylim([-2, 2]) 
-
-        sp3.set_title("All Channels")
-        sp3.set_xlabel("Time (s)")
-        sp3.set_ylabel("Amplitude") 
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-    
-- 
cgit v1.2.3