From dc172e5dc3f42143a5de6c43bf4f9118c273986b Mon Sep 17 00:00:00 2001
From: Johnathan Corgan <jcorgan@corganenterprises.com>
Date: Sat, 23 Jun 2012 19:41:40 -0700
Subject: core: wip, first pass to remove filter/hier blocks after migration to
 gr-filter

* This commit removes all the blocks from src/lib/filter and src/lib/hier,
but leaves a couple stray files in src/lib/filter that won't be removed
until gr-analog is done

* The relevant QA code has been removed and the gnuradio-core directory
passes QA

* The effect on Python files in src/python/* has not been fully accounted
for

* Several top-level components outside gnuradio-core use header files,
blocks, or utility functions that have moved to gr-digital.  These have
not been updated yet.

* Similarly, impact on python example files in other components as not
yet been accounted for.
---
 gnuradio-core/src/examples/CMakeLists.txt          |   1 -
 gnuradio-core/src/examples/pfb/CMakeLists.txt      |  36 --
 gnuradio-core/src/examples/pfb/channelize.py       | 191 -------
 gnuradio-core/src/examples/pfb/chirp_channelize.py | 203 -------
 gnuradio-core/src/examples/pfb/decimate.py         | 178 ------
 gnuradio-core/src/examples/pfb/fmtest.py           | 225 --------
 gnuradio-core/src/examples/pfb/interpolate.py      | 233 --------
 gnuradio-core/src/examples/pfb/reconstruction.py   | 131 -----
 gnuradio-core/src/examples/pfb/resampler.py        | 127 -----
 gnuradio-core/src/examples/pfb/resampler_demo.grc  | 598 ---------------------
 gnuradio-core/src/examples/pfb/synth_filter.py     |  83 ---
 gnuradio-core/src/examples/pfb/synth_to_chan.py    | 117 ----
 12 files changed, 2123 deletions(-)
 delete mode 100644 gnuradio-core/src/examples/pfb/CMakeLists.txt
 delete mode 100755 gnuradio-core/src/examples/pfb/channelize.py
 delete mode 100755 gnuradio-core/src/examples/pfb/chirp_channelize.py
 delete mode 100755 gnuradio-core/src/examples/pfb/decimate.py
 delete mode 100755 gnuradio-core/src/examples/pfb/fmtest.py
 delete mode 100755 gnuradio-core/src/examples/pfb/interpolate.py
 delete mode 100755 gnuradio-core/src/examples/pfb/reconstruction.py
 delete mode 100755 gnuradio-core/src/examples/pfb/resampler.py
 delete mode 100644 gnuradio-core/src/examples/pfb/resampler_demo.grc
 delete mode 100755 gnuradio-core/src/examples/pfb/synth_filter.py
 delete mode 100755 gnuradio-core/src/examples/pfb/synth_to_chan.py

(limited to 'gnuradio-core/src/examples')

diff --git a/gnuradio-core/src/examples/CMakeLists.txt b/gnuradio-core/src/examples/CMakeLists.txt
index c2b847c919..fc06c23476 100644
--- a/gnuradio-core/src/examples/CMakeLists.txt
+++ b/gnuradio-core/src/examples/CMakeLists.txt
@@ -19,6 +19,5 @@
 
 add_subdirectory(mp-sched)
 add_subdirectory(network)
-add_subdirectory(pfb)
 add_subdirectory(tags)
 add_subdirectory(volk_benchmark)
\ No newline at end of file
diff --git a/gnuradio-core/src/examples/pfb/CMakeLists.txt b/gnuradio-core/src/examples/pfb/CMakeLists.txt
deleted file mode 100644
index 6bb25568c8..0000000000
--- a/gnuradio-core/src/examples/pfb/CMakeLists.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-# Copyright 2011 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-
-include(GrPython)
-
-GR_PYTHON_INSTALL(PROGRAMS
-  channelize.py
-  chirp_channelize.py
-  decimate.py
-  fmtest.py
-  interpolate.py
-  resampler_demo.grc
-  resampler.py
-  synth_filter.py
-  synth_to_chan.py
-  reconstruction.py
-  DESTINATION ${GR_PKG_DATA_DIR}/examples/pfb
-  COMPONENT "core_python"
-)
-
diff --git a/gnuradio-core/src/examples/pfb/channelize.py b/gnuradio-core/src/examples/pfb/channelize.py
deleted file mode 100755
index 442f263f47..0000000000
--- a/gnuradio-core/src/examples/pfb/channelize.py
+++ /dev/null
@@ -1,191 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-    from pylab import mlab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class pfb_top_block(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._N = 2000000        # number of samples to use
-        self._fs = 9000          # initial sampling rate
-        self._M = 9              # Number of channels to channelize
-
-        # Create a set of taps for the PFB channelizer
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50,
-                                          attenuation_dB=100, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Calculate the number of taps per channel for our own information
-        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
-        print "Number of taps:     ", len(self._taps)
-        print "Number of channels: ", self._M
-        print "Taps per channel:   ", tpc
-
-        # Create a set of signals at different frequencies
-        #   freqs lists the frequencies of the signals that get stored
-        #   in the list "signals", which then get summed together
-        self.signals = list()
-        self.add = gr.add_cc()
-        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
-        for i in xrange(len(freqs)):
-            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
-            self.connect(self.signals[i], (self.add,i))
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
-        # Construct the channelizer filter
-        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps, 1)
-
-        # Construct a vector sink for the input signal to the channelizer
-        self.snk_i = gr.vector_sink_c()
-
-        # Connect the blocks
-        self.connect(self.add, self.head, self.pfb)
-        self.connect(self.add, self.snk_i)
-
-        # Use this to play with the channel mapping
-        #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4])
-
-        # Create a vector sink for each of M output channels of the filter and connect it
-        self.snks = list()
-        for i in xrange(self._M):
-            self.snks.append(gr.vector_sink_c())
-            self.connect((self.pfb, i), self.snks[i])
-
-
-def main():
-    tstart = time.time()
-
-    tb = pfb_top_block()
-    tb.run()
-
-    tend = time.time()
-    print "Run time: %f" % (tend - tstart)
-
-    if 1:
-        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
-        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
-        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
-
-        Ns = 1000
-        Ne = 10000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-        fs = tb._fs
-
-        # Plot the input signal on its own figure
-        d = tb.snk_i.data()[Ns:Ne]
-        spin_f = fig_in.add_subplot(2, 1, 1)
-
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_in = 10.0*scipy.log10(abs(X))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        pin_f = spin_f.plot(f_in, X_in, "b")
-        spin_f.set_xlim([min(f_in), max(f_in)+1])
-        spin_f.set_ylim([-200.0, 50.0])
-
-        spin_f.set_title("Input Signal", weight="bold")
-        spin_f.set_xlabel("Frequency (Hz)")
-        spin_f.set_ylabel("Power (dBW)")
-
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        spin_t = fig_in.add_subplot(2, 1, 2)
-        pin_t = spin_t.plot(t_in, x_in.real, "b")
-        pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
-        spin_t.set_xlabel("Time (s)")
-        spin_t.set_ylabel("Amplitude")
-
-        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
-        Nrows = int(scipy.floor(tb._M / Ncols))
-        if(tb._M % Ncols != 0):
-            Nrows += 1
-
-        # Plot each of the channels outputs. Frequencies on Figure 2 and
-        # time signals on Figure 3
-        fs_o = tb._fs / tb._M
-        Ts_o = 1.0/fs_o
-        Tmax_o = len(d)*Ts_o
-        for i in xrange(len(tb.snks)):
-            # remove issues with the transients at the beginning
-            # also remove some corruption at the end of the stream
-            #    this is a bug, probably due to the corner cases
-            d = tb.snks[i].data()[Ns:Ne]
-
-            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                              window = lambda d: d*winfunc(fftlen),
-                              scale_by_freq=True)
-            X_o = 10.0*scipy.log10(abs(X))
-            f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
-            p2_f = sp1_f.plot(f_o, X_o, "b")
-            sp1_f.set_xlim([min(f_o), max(f_o)+1])
-            sp1_f.set_ylim([-200.0, 50.0])
-
-            sp1_f.set_title(("Channel %d" % i), weight="bold")
-            sp1_f.set_xlabel("Frequency (Hz)")
-            sp1_f.set_ylabel("Power (dBW)")
-
-            x_o = scipy.array(d)
-            t_o = scipy.arange(0, Tmax_o, Ts_o)
-            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
-            p2_o = sp2_o.plot(t_o, x_o.real, "b")
-            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
-            sp2_o.set_xlim([min(t_o), max(t_o)+1])
-            sp2_o.set_ylim([-2, 2])
-
-            sp2_o.set_title(("Channel %d" % i), weight="bold")
-            sp2_o.set_xlabel("Time (s)")
-            sp2_o.set_ylabel("Amplitude")
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-
diff --git a/gnuradio-core/src/examples/pfb/chirp_channelize.py b/gnuradio-core/src/examples/pfb/chirp_channelize.py
deleted file mode 100755
index 1c485ea9dd..0000000000
--- a/gnuradio-core/src/examples/pfb/chirp_channelize.py
+++ /dev/null
@@ -1,203 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-    from pylab import mlab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class pfb_top_block(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._N = 200000         # number of samples to use
-        self._fs = 9000          # initial sampling rate
-        self._M = 9              # Number of channels to channelize
-
-        # Create a set of taps for the PFB channelizer
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20,
-                                          attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Calculate the number of taps per channel for our own information
-        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
-        print "Number of taps:     ", len(self._taps)
-        print "Number of channels: ", self._M
-        print "Taps per channel:   ", tpc
-
-        repeated = True
-        if(repeated):
-            self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
-        else:
-            amp = 100
-            data = scipy.arange(0, amp, amp/float(self._N))
-            self.vco_input = gr.vector_source_f(data, False)
-
-        # Build a VCO controlled by either the sinusoid or single chirp tone
-        # Then convert this to a complex signal
-        self.vco = gr.vco_f(self._fs, 225, 1)
-        self.f2c = gr.float_to_complex()
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
-        # Construct the channelizer filter
-        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
-        # Construct a vector sink for the input signal to the channelizer
-        self.snk_i = gr.vector_sink_c()
-
-        # Connect the blocks
-        self.connect(self.vco_input, self.vco, self.f2c)
-        self.connect(self.f2c, self.head, self.pfb)
-        self.connect(self.f2c, self.snk_i)
-
-        # Create a vector sink for each of M output channels of the filter and connect it
-        self.snks = list()
-        for i in xrange(self._M):
-            self.snks.append(gr.vector_sink_c())
-            self.connect((self.pfb, i), self.snks[i])
-
-
-def main():
-    tstart = time.time()
-
-    tb = pfb_top_block()
-    tb.run()
-
-    tend = time.time()
-    print "Run time: %f" % (tend - tstart)
-
-    if 1:
-        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
-        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
-        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
-        fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
-
-        Ns = 650
-        Ne = 20000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-        fs = tb._fs
-
-        # Plot the input signal on its own figure
-        d = tb.snk_i.data()[Ns:Ne]
-        spin_f = fig_in.add_subplot(2, 1, 1)
-
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        pin_f = spin_f.plot(f_in, X_in, "b")
-        spin_f.set_xlim([min(f_in), max(f_in)+1])
-        spin_f.set_ylim([-200.0, 50.0])
-
-        spin_f.set_title("Input Signal", weight="bold")
-        spin_f.set_xlabel("Frequency (Hz)")
-        spin_f.set_ylabel("Power (dBW)")
-
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        spin_t = fig_in.add_subplot(2, 1, 2)
-        pin_t = spin_t.plot(t_in, x_in.real, "b")
-        pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
-        spin_t.set_xlabel("Time (s)")
-        spin_t.set_ylabel("Amplitude")
-
-        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
-        Nrows = int(scipy.floor(tb._M / Ncols))
-        if(tb._M % Ncols != 0):
-            Nrows += 1
-
-        # Plot each of the channels outputs. Frequencies on Figure 2 and
-        # time signals on Figure 3
-        fs_o = tb._fs / tb._M
-        Ts_o = 1.0/fs_o
-        Tmax_o = len(d)*Ts_o
-        for i in xrange(len(tb.snks)):
-            # remove issues with the transients at the beginning
-            # also remove some corruption at the end of the stream
-            #    this is a bug, probably due to the corner cases
-            d = tb.snks[i].data()[Ns:Ne]
-
-            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                              window = lambda d: d*winfunc(fftlen),
-                              scale_by_freq=True)
-            X_o = 10.0*scipy.log10(abs(X))
-            f_o = freq
-            p2_f = sp1_f.plot(f_o, X_o, "b")
-            sp1_f.set_xlim([min(f_o), max(f_o)+1])
-            sp1_f.set_ylim([-200.0, 50.0])
-
-            sp1_f.set_title(("Channel %d" % i), weight="bold")
-            sp1_f.set_xlabel("Frequency (Hz)")
-            sp1_f.set_ylabel("Power (dBW)")
-
-            x_o = scipy.array(d)
-            t_o = scipy.arange(0, Tmax_o, Ts_o)
-            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
-            p2_o = sp2_o.plot(t_o, x_o.real, "b")
-            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
-            sp2_o.set_xlim([min(t_o), max(t_o)+1])
-            sp2_o.set_ylim([-2, 2])
-
-            sp2_o.set_title(("Channel %d" % i), weight="bold")
-            sp2_o.set_xlabel("Time (s)")
-            sp2_o.set_ylabel("Amplitude")
-
-
-            sp3 = fig3.add_subplot(1,1,1)
-            p3 = sp3.plot(t_o, x_o.real)
-            sp3.set_xlim([min(t_o), max(t_o)+1])
-            sp3.set_ylim([-2, 2])
-
-        sp3.set_title("All Channels")
-        sp3.set_xlabel("Time (s)")
-        sp3.set_ylabel("Amplitude")
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-
diff --git a/gnuradio-core/src/examples/pfb/decimate.py b/gnuradio-core/src/examples/pfb/decimate.py
deleted file mode 100755
index 5322d746db..0000000000
--- a/gnuradio-core/src/examples/pfb/decimate.py
+++ /dev/null
@@ -1,178 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-    from pylab import mlab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class pfb_top_block(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._N = 10000000      # number of samples to use
-        self._fs = 10000        # initial sampling rate
-        self._decim = 20        # Decimation rate
-
-        # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth
-        self._taps = gr.firdes.low_pass_2(1, self._fs, 200, 150,
-                                          attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Calculate the number of taps per channel for our own information
-        tpc = scipy.ceil(float(len(self._taps)) /  float(self._decim))
-        print "Number of taps:     ", len(self._taps)
-        print "Number of filters:  ", self._decim
-        print "Taps per channel:   ", tpc
-
-        # Build the input signal source
-        # We create a list of freqs, and a sine wave is generated and added to the source
-        # for each one of these frequencies.
-        self.signals = list()
-        self.add = gr.add_cc()
-        freqs = [10, 20, 2040]
-        for i in xrange(len(freqs)):
-            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
-            self.connect(self.signals[i], (self.add,i))
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
-        # Construct a PFB decimator filter
-        self.pfb = blks2.pfb_decimator_ccf(self._decim, self._taps, 0)
-
-        # Construct a standard FIR decimating filter
-        self.dec = gr.fir_filter_ccf(self._decim, self._taps)
-
-        self.snk_i = gr.vector_sink_c()
-
-        # Connect the blocks
-        self.connect(self.add, self.head, self.pfb)
-        self.connect(self.add, self.snk_i)
-
-        # Create the sink for the decimated siganl
-        self.snk = gr.vector_sink_c()
-        self.connect(self.pfb, self.snk)
-
-
-def main():
-    tb = pfb_top_block()
-
-    tstart = time.time()
-    tb.run()
-    tend = time.time()
-    print "Run time: %f" % (tend - tstart)
-
-    if 1:
-        fig1 = pylab.figure(1, figsize=(16,9))
-        fig2 = pylab.figure(2, figsize=(16,9))
-
-        Ns = 10000
-        Ne = 10000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-        fs = tb._fs
-
-        # Plot the input to the decimator
-
-        d = tb.snk_i.data()[Ns:Ns+Ne]
-        sp1_f = fig1.add_subplot(2, 1, 1)
-
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        p1_f = sp1_f.plot(f_in, X_in, "b")
-        sp1_f.set_xlim([min(f_in), max(f_in)+1])
-        sp1_f.set_ylim([-200.0, 50.0])
-
-        sp1_f.set_title("Input Signal", weight="bold")
-        sp1_f.set_xlabel("Frequency (Hz)")
-        sp1_f.set_ylabel("Power (dBW)")
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        sp1_t = fig1.add_subplot(2, 1, 2)
-        p1_t = sp1_t.plot(t_in, x_in.real, "b")
-        p1_t = sp1_t.plot(t_in, x_in.imag, "r")
-        sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1])
-
-        sp1_t.set_xlabel("Time (s)")
-        sp1_t.set_ylabel("Amplitude")
-
-
-        # Plot the output of the decimator
-        fs_o = tb._fs / tb._decim
-
-        sp2_f = fig2.add_subplot(2, 1, 1)
-        d = tb.snk.data()[Ns:Ns+Ne]
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
-        p2_f = sp2_f.plot(f_o, X_o, "b")
-        sp2_f.set_xlim([min(f_o), max(f_o)+1])
-        sp2_f.set_ylim([-200.0, 50.0])
-
-        sp2_f.set_title("PFB Decimated Signal", weight="bold")
-        sp2_f.set_xlabel("Frequency (Hz)")
-        sp2_f.set_ylabel("Power (dBW)")
-
-
-        Ts_o = 1.0/fs_o
-        Tmax_o = len(d)*Ts_o
-
-        x_o = scipy.array(d)
-        t_o = scipy.arange(0, Tmax_o, Ts_o)
-        sp2_t = fig2.add_subplot(2, 1, 2)
-        p2_t = sp2_t.plot(t_o, x_o.real, "b-o")
-        p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
-        sp2_t.set_ylim([-2.5, 2.5])
-
-        sp2_t.set_xlabel("Time (s)")
-        sp2_t.set_ylabel("Amplitude")
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-
diff --git a/gnuradio-core/src/examples/pfb/fmtest.py b/gnuradio-core/src/examples/pfb/fmtest.py
deleted file mode 100755
index b9dd9b3823..0000000000
--- a/gnuradio-core/src/examples/pfb/fmtest.py
+++ /dev/null
@@ -1,225 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, math, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-
-class fmtx(gr.hier_block2):
-    def __init__(self, lo_freq, audio_rate, if_rate):
-
-        gr.hier_block2.__init__(self, "build_fm",
-                                gr.io_signature(1, 1, gr.sizeof_float),      # Input signature
-                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
-
-        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
-
-        # Local oscillator
-        lo = gr.sig_source_c (if_rate,        # sample rate
-                              gr.GR_SIN_WAVE, # waveform type
-                              lo_freq,        #frequency
-                              1.0,            # amplitude
-                              0)              # DC Offset
-        mixer = gr.multiply_cc ()
-
-        self.connect (self, fmtx, (mixer, 0))
-        self.connect (lo, (mixer, 1))
-        self.connect (mixer, self)
-
-class fmtest(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._nsamples = 1000000
-        self._audio_rate = 8000
-
-        # Set up N channels with their own baseband and IF frequencies
-        self._N = 5
-        chspacing = 16000
-        freq = [10, 20, 30, 40, 50]
-        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]
-
-        self._if_rate = 4*self._N*self._audio_rate
-
-        # Create a signal source and frequency modulate it
-        self.sum = gr.add_cc ()
-        for n in xrange(self._N):
-            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
-            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
-            self.connect(sig, fm)
-            self.connect(fm, (self.sum, n))
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
-        self.snk_tx = gr.vector_sink_c()
-        self.channel = blks2.channel_model(0.1)
-
-        self.connect(self.sum, self.head, self.channel, self.snk_tx)
-
-
-        # Design the channlizer
-        self._M = 10
-        bw = chspacing/2.0
-        t_bw = chspacing/10.0
-        self._chan_rate = self._if_rate / self._M
-        self._taps = gr.firdes.low_pass_2(1, self._if_rate, bw, t_bw,
-                                          attenuation_dB=100,
-                                          window=gr.firdes.WIN_BLACKMAN_hARRIS)
-        tpc = math.ceil(float(len(self._taps)) /  float(self._M))
-
-        print "Number of taps:     ", len(self._taps)
-        print "Number of channels: ", self._M
-        print "Taps per channel:   ", tpc
-
-        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
-        self.connect(self.channel, self.pfb)
-
-        # Create a file sink for each of M output channels of the filter and connect it
-        self.fmdet = list()
-        self.squelch = list()
-        self.snks = list()
-        for i in xrange(self._M):
-            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
-            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
-            self.snks.append(gr.vector_sink_f())
-            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
-
-    def num_tx_channels(self):
-        return self._N
-
-    def num_rx_channels(self):
-        return self._M
-
-def main():
-
-    fm = fmtest()
-
-    tstart = time.time()
-    fm.run()
-    tend = time.time()
-
-    if 1:
-        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
-        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
-        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
-        Ns = 10000
-        Ne = 100000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-
-        # Plot transmitted signal
-        fs = fm._if_rate
-
-        d = fm.snk_tx.data()[Ns:Ns+Ne]
-        sp1_f = fig1.add_subplot(2, 1, 1)
-
-        X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                           window = lambda d: d*winfunc(fftlen),
-                           visible=False)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        p1_f = sp1_f.plot(f_in, X_in, "b")
-        sp1_f.set_xlim([min(f_in), max(f_in)+1])
-        sp1_f.set_ylim([-120.0, 20.0])
-
-        sp1_f.set_title("Input Signal", weight="bold")
-        sp1_f.set_xlabel("Frequency (Hz)")
-        sp1_f.set_ylabel("Power (dBW)")
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        sp1_t = fig1.add_subplot(2, 1, 2)
-        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
-        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
-        sp1_t.set_ylim([-5, 5])
-
-        # Set up the number of rows and columns for plotting the subfigures
-        Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels())))
-        Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols))
-        if(fm.num_rx_channels() % Ncols != 0):
-            Nrows += 1
-
-        # Plot each of the channels outputs. Frequencies on Figure 2 and
-        # time signals on Figure 3
-        fs_o = fm._audio_rate
-        for i in xrange(len(fm.snks)):
-            # remove issues with the transients at the beginning
-            # also remove some corruption at the end of the stream
-            #    this is a bug, probably due to the corner cases
-            d = fm.snks[i].data()[Ns:Ne]
-
-            sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i)
-            X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
-                               window = lambda d: d*winfunc(fftlen),
-                               visible=False)
-            #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-            X_o = 10.0*scipy.log10(abs(X))
-            #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
-            f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size))
-            p2_f = sp2_f.plot(f_o, X_o, "b")
-            sp2_f.set_xlim([min(f_o), max(f_o)+0.1])
-            sp2_f.set_ylim([-120.0, 20.0])
-            sp2_f.grid(True)
-
-            sp2_f.set_title(("Channel %d" % i), weight="bold")
-            sp2_f.set_xlabel("Frequency (kHz)")
-            sp2_f.set_ylabel("Power (dBW)")
-
-
-            Ts = 1.0/fs_o
-            Tmax = len(d)*Ts
-            t_o = scipy.arange(0, Tmax, Ts)
-
-            x_t = scipy.array(d)
-            sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i)
-            p2_t = sp2_t.plot(t_o, x_t.real, "b")
-            p2_t = sp2_t.plot(t_o, x_t.imag, "r")
-            sp2_t.set_xlim([min(t_o), max(t_o)+1])
-            sp2_t.set_ylim([-1, 1])
-
-            sp2_t.set_xlabel("Time (s)")
-            sp2_t.set_ylabel("Amplitude")
-
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    main()
diff --git a/gnuradio-core/src/examples/pfb/interpolate.py b/gnuradio-core/src/examples/pfb/interpolate.py
deleted file mode 100755
index 98068f220b..0000000000
--- a/gnuradio-core/src/examples/pfb/interpolate.py
+++ /dev/null
@@ -1,233 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
-    import scipy
-    from scipy import fftpack
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-    from pylab import mlab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class pfb_top_block(gr.top_block):
-    def __init__(self):
-        gr.top_block.__init__(self)
-
-        self._N = 100000        # number of samples to use
-        self._fs = 2000         # initial sampling rate
-        self._interp = 5        # Interpolation rate for PFB interpolator
-        self._ainterp = 5.5       # Resampling rate for the PFB arbitrary resampler
-
-        # Frequencies of the signals we construct
-        freq1 = 100
-        freq2 = 200
-
-        # Create a set of taps for the PFB interpolator
-        # This is based on the post-interpolation sample rate
-        self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50,
-                                          attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Create a set of taps for the PFB arbitrary resampler
-        # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes,
-        # and larger numbers will reduce these even farther
-        # The taps in this filter are based on a sampling rate of the filter size since it acts
-        # internally as an interpolator.
-        flt_size = 32
-        self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150,
-                                           attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
-        # Calculate the number of taps per channel for our own information
-        tpc = scipy.ceil(float(len(self._taps)) /  float(self._interp))
-        print "Number of taps:     ", len(self._taps)
-        print "Number of filters:  ", self._interp
-        print "Taps per channel:   ", tpc
-
-        # Create a couple of signals at different frequencies
-        self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5)
-        self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5)
-        self.signal = gr.add_cc()
-
-        self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
-        # Construct the PFB interpolator filter
-        self.pfb = blks2.pfb_interpolator_ccf(self._interp, self._taps)
-
-        # Construct the PFB arbitrary resampler filter
-        self.pfb_ar = blks2.pfb_arb_resampler_ccf(self._ainterp, self._taps2, flt_size)
-        self.snk_i = gr.vector_sink_c()
-
-        #self.pfb_ar.pfb.print_taps()
-        #self.pfb.pfb.print_taps()
-
-        # Connect the blocks
-        self.connect(self.signal1, self.head, (self.signal,0))
-        self.connect(self.signal2, (self.signal,1))
-        self.connect(self.signal, self.pfb)
-        self.connect(self.signal, self.pfb_ar)
-        self.connect(self.signal, self.snk_i)
-
-        # Create the sink for the interpolated signals
-        self.snk1 = gr.vector_sink_c()
-        self.snk2 = gr.vector_sink_c()
-        self.connect(self.pfb, self.snk1)
-        self.connect(self.pfb_ar, self.snk2)
-
-
-def main():
-    tb = pfb_top_block()
-
-    tstart = time.time()
-    tb.run()
-    tend = time.time()
-    print "Run time: %f" % (tend - tstart)
-
-
-    if 1:
-        fig1 = pylab.figure(1, figsize=(12,10), facecolor="w")
-        fig2 = pylab.figure(2, figsize=(12,10), facecolor="w")
-        fig3 = pylab.figure(3, figsize=(12,10), facecolor="w")
-
-        Ns = 10000
-        Ne = 10000
-
-        fftlen = 8192
-        winfunc = scipy.blackman
-
-        # Plot input signal
-        fs = tb._fs
-
-        d = tb.snk_i.data()[Ns:Ns+Ne]
-        sp1_f = fig1.add_subplot(2, 1, 1)
-
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
-        p1_f = sp1_f.plot(f_in, X_in, "b")
-        sp1_f.set_xlim([min(f_in), max(f_in)+1])
-        sp1_f.set_ylim([-200.0, 50.0])
-
-
-        sp1_f.set_title("Input Signal", weight="bold")
-        sp1_f.set_xlabel("Frequency (Hz)")
-        sp1_f.set_ylabel("Power (dBW)")
-
-        Ts = 1.0/fs
-        Tmax = len(d)*Ts
-
-        t_in = scipy.arange(0, Tmax, Ts)
-        x_in = scipy.array(d)
-        sp1_t = fig1.add_subplot(2, 1, 2)
-        p1_t = sp1_t.plot(t_in, x_in.real, "b-o")
-        #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o")
-        sp1_t.set_ylim([-2.5, 2.5])
-
-        sp1_t.set_title("Input Signal", weight="bold")
-        sp1_t.set_xlabel("Time (s)")
-        sp1_t.set_ylabel("Amplitude")
-
-
-        # Plot output of PFB interpolator
-        fs_int = tb._fs*tb._interp
-
-        sp2_f = fig2.add_subplot(2, 1, 1)
-        d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)]
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size))
-        p2_f = sp2_f.plot(f_o, X_o, "b")
-        sp2_f.set_xlim([min(f_o), max(f_o)+1])
-        sp2_f.set_ylim([-200.0, 50.0])
-
-        sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold")
-        sp2_f.set_xlabel("Frequency (Hz)")
-        sp2_f.set_ylabel("Power (dBW)")
-
-        Ts_int = 1.0/fs_int
-        Tmax = len(d)*Ts_int
-
-        t_o = scipy.arange(0, Tmax, Ts_int)
-        x_o1 = scipy.array(d)
-        sp2_t = fig2.add_subplot(2, 1, 2)
-        p2_t = sp2_t.plot(t_o, x_o1.real, "b-o")
-        #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o")
-        sp2_t.set_ylim([-2.5, 2.5])
-
-        sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold")
-        sp2_t.set_xlabel("Time (s)")
-        sp2_t.set_ylabel("Amplitude")
-
-
-        # Plot output of PFB arbitrary resampler
-        fs_aint = tb._fs * tb._ainterp
-
-        sp3_f = fig3.add_subplot(2, 1, 1)
-        d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)]
-        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
-                          window = lambda d: d*winfunc(fftlen),
-                          scale_by_freq=True)
-        X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
-        f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size))
-        p3_f = sp3_f.plot(f_o, X_o, "b")
-        sp3_f.set_xlim([min(f_o), max(f_o)+1])
-        sp3_f.set_ylim([-200.0, 50.0])
-
-        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
-        sp3_f.set_xlabel("Frequency (Hz)")
-        sp3_f.set_ylabel("Power (dBW)")
-
-        Ts_aint = 1.0/fs_aint
-        Tmax = len(d)*Ts_aint
-
-        t_o = scipy.arange(0, Tmax, Ts_aint)
-        x_o2 = scipy.array(d)
-        sp3_f = fig3.add_subplot(2, 1, 2)
-        p3_f = sp3_f.plot(t_o, x_o2.real, "b-o")
-        p3_f = sp3_f.plot(t_o, x_o1.real, "m-o")
-        #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o")
-        sp3_f.set_ylim([-2.5, 2.5])
-
-        sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold")
-        sp3_f.set_xlabel("Time (s)")
-        sp3_f.set_ylabel("Amplitude")
-
-        pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-
diff --git a/gnuradio-core/src/examples/pfb/reconstruction.py b/gnuradio-core/src/examples/pfb/reconstruction.py
deleted file mode 100755
index 59910e4d6d..0000000000
--- a/gnuradio-core/src/examples/pfb/reconstruction.py
+++ /dev/null
@@ -1,131 +0,0 @@
-#!/usr/bin/env python
-
-import scipy, math, pylab
-from scipy import fftpack
-from gnuradio import gr, digital, blks2
-
-fftlen = 8192
-
-def main():
-    N = 10000
-    fs = 2000.0
-    Ts = 1.0/fs
-    t = scipy.arange(0, N*Ts, Ts)
-
-    # When playing with the number of channels, be careful about the filter
-    # specs and the channel map of the synthesizer set below.
-    nchans = 10
-
-    # Build the filter(s)
-    bw = 1000
-    tb = 400
-    proto_taps = gr.firdes.low_pass_2(1, nchans*fs, bw, tb, 80,
-                                      gr.firdes.WIN_BLACKMAN_hARRIS)
-    print "Filter length: ", len(proto_taps)
-
-
-    # Create a modulated signal
-    npwr = 0.01
-    data = scipy.random.randint(0, 256, N)
-    rrc_taps = gr.firdes.root_raised_cosine(1, 2, 1, 0.35, 41)
-
-    src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False)
-    mod = digital.bpsk_mod(samples_per_symbol=2)
-    chan = gr.channel_model(npwr)
-    rrc = gr.fft_filter_ccc(1, rrc_taps)
-
-    # Split it up into pieces
-    channelizer = blks2.pfb_channelizer_ccf(nchans, proto_taps, 2)
-
-    # Put the pieces back together again
-    syn_taps = [nchans*t for t in proto_taps]
-    synthesizer = gr.pfb_synthesizer_ccf(nchans, syn_taps, True)
-    src_snk = gr.vector_sink_c()
-    snk = gr.vector_sink_c()
-
-    # Remap the location of the channels
-    # Can be done in synth or channelizer (watch out for rotattions in
-    # the channelizer)
-    synthesizer.set_channel_map([ 0,  1,  2,  3,  4,
-                                 15, 16, 17, 18, 19])
-
-    tb = gr.top_block()
-    tb.connect(src, mod, chan, rrc, channelizer)
-    tb.connect(rrc, src_snk)
-
-    vsnk = []
-    for i in xrange(nchans):
-        tb.connect((channelizer,i), (synthesizer, i))
-
-        vsnk.append(gr.vector_sink_c())
-        tb.connect((channelizer,i), vsnk[i])
-
-    tb.connect(synthesizer, snk)
-    tb.run()
-
-    sin  = scipy.array(src_snk.data()[1000:])
-    sout = scipy.array(snk.data()[1000:])
-
-
-    # Plot original signal
-    fs_in = nchans*fs
-    f1 = pylab.figure(1, figsize=(16,12), facecolor='w')
-    s11 = f1.add_subplot(2,2,1)
-    s11.psd(sin, NFFT=fftlen, Fs=fs_in)
-    s11.set_title("PSD of Original Signal")
-    s11.set_ylim([-200, -20])
-
-    s12 = f1.add_subplot(2,2,2)
-    s12.plot(sin.real[1000:1500], "o-b")
-    s12.plot(sin.imag[1000:1500], "o-r")
-    s12.set_title("Original Signal in Time")
-
-    start = 1
-    skip  = 4
-    s13 = f1.add_subplot(2,2,3)
-    s13.plot(sin.real[start::skip], sin.imag[start::skip], "o")
-    s13.set_title("Constellation")
-    s13.set_xlim([-2, 2])
-    s13.set_ylim([-2, 2])
-
-    # Plot channels
-    nrows = int(scipy.sqrt(nchans))
-    ncols = int(scipy.ceil(float(nchans)/float(nrows)))
-
-    f2 = pylab.figure(2, figsize=(16,12), facecolor='w')
-    for n in xrange(nchans):
-        s = f2.add_subplot(nrows, ncols, n+1)
-        s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in)
-        s.set_title("Channel {0}".format(n))
-        s.set_ylim([-200, -20])
-
-    # Plot reconstructed signal
-    fs_out = 2*nchans*fs
-    f3 = pylab.figure(3, figsize=(16,12), facecolor='w')
-    s31 = f3.add_subplot(2,2,1)
-    s31.psd(sout, NFFT=fftlen, Fs=fs_out)
-    s31.set_title("PSD of Reconstructed Signal")
-    s31.set_ylim([-200, -20])
-
-    s32 = f3.add_subplot(2,2,2)
-    s32.plot(sout.real[1000:1500], "o-b")
-    s32.plot(sout.imag[1000:1500], "o-r")
-    s32.set_title("Reconstructed Signal in Time")
-
-    start = 2
-    skip  = 4
-    s33 = f3.add_subplot(2,2,3)
-    s33.plot(sout.real[start::skip], sout.imag[start::skip], "o")
-    s33.set_title("Constellation")
-    s33.set_xlim([-2, 2])
-    s33.set_ylim([-2, 2])
-
-    pylab.show()
-
-
-if __name__ == "__main__":
-    try:
-        main()
-    except KeyboardInterrupt:
-        pass
-
diff --git a/gnuradio-core/src/examples/pfb/resampler.py b/gnuradio-core/src/examples/pfb/resampler.py
deleted file mode 100755
index 555938d281..0000000000
--- a/gnuradio-core/src/examples/pfb/resampler.py
+++ /dev/null
@@ -1,127 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
-    import scipy
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-class mytb(gr.top_block):
-    def __init__(self, fs_in, fs_out, fc, N=10000):
-        gr.top_block.__init__(self)
-
-        rerate = float(fs_out) / float(fs_in)
-        print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate)
-
-        # Creating our own taps
-        taps = gr.firdes.low_pass_2(32, 32, 0.25, 0.1, 80)
-
-        self.src = gr.sig_source_c(fs_in, gr.GR_SIN_WAVE, fc, 1)
-        #self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1)
-        self.head = gr.head(gr.sizeof_gr_complex, N)
-
-        # A resampler with our taps
-        self.resamp_0 = blks2.pfb_arb_resampler_ccf(rerate, taps,
-                                                    flt_size=32)
-
-        # A resampler that just needs a resampling rate.
-        # Filter is created for us and designed to cover
-        # entire bandwidth of the input signal.
-        # An optional atten=XX rate can be used here to
-        # specify the out-of-band rejection (default=80).
-        self.resamp_1 = blks2.pfb_arb_resampler_ccf(rerate)
-
-        self.snk_in = gr.vector_sink_c()
-        self.snk_0 = gr.vector_sink_c()
-        self.snk_1 = gr.vector_sink_c()
-
-        self.connect(self.src, self.head, self.snk_in)
-        self.connect(self.head, self.resamp_0, self.snk_0)
-        self.connect(self.head, self.resamp_1, self.snk_1)
-
-def main():
-    fs_in = 8000
-    fs_out = 20000
-    fc = 1000
-    N = 10000
-
-    tb = mytb(fs_in, fs_out, fc, N)
-    tb.run()
-
-
-    # Plot PSD of signals
-    nfftsize = 2048
-    fig1 = pylab.figure(1, figsize=(10,10), facecolor="w")
-    sp1 = fig1.add_subplot(2,1,1)
-    sp1.psd(tb.snk_in.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_in)
-    sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
-    sp1.set_xlim([-fs_in/2, fs_in/2])
-
-    sp2 = fig1.add_subplot(2,1,2)
-    sp2.psd(tb.snk_0.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_out,
-            label="With our filter")
-    sp2.psd(tb.snk_1.data(), NFFT=nfftsize,
-            noverlap=nfftsize/4, Fs = fs_out,
-            label="With auto-generated filter")
-    sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
-    sp2.set_xlim([-fs_out/2, fs_out/2])
-    sp2.legend()
-
-    # Plot signals in time
-    Ts_in = 1.0/fs_in
-    Ts_out = 1.0/fs_out
-    t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in)
-    t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out)
-
-    fig2 = pylab.figure(2, figsize=(10,10), facecolor="w")
-    sp21 = fig2.add_subplot(2,1,1)
-    sp21.plot(t_in, tb.snk_in.data())
-    sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0)))
-    sp21.set_xlim([t_in[100], t_in[200]])
-
-    sp22 = fig2.add_subplot(2,1,2)
-    sp22.plot(t_out, tb.snk_0.data(),
-              label="With our filter")
-    sp22.plot(t_out, tb.snk_1.data(),
-              label="With auto-generated filter")
-    sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0)))
-    r = float(fs_out)/float(fs_in)
-    sp22.set_xlim([t_out[r * 100], t_out[r * 200]])
-    sp22.legend()
-
-    pylab.show()
-
-if __name__ == "__main__":
-    main()
-
diff --git a/gnuradio-core/src/examples/pfb/resampler_demo.grc b/gnuradio-core/src/examples/pfb/resampler_demo.grc
deleted file mode 100644
index 468636a5cf..0000000000
--- a/gnuradio-core/src/examples/pfb/resampler_demo.grc
+++ /dev/null
@@ -1,598 +0,0 @@
-<?xml version='1.0' encoding='ASCII'?>
-<flow_graph>
-  <timestamp>Sun Aug 23 11:39:47 2009</timestamp>
-  <block>
-    <key>options</key>
-    <param>
-      <key>id</key>
-      <value>resampler_demo</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>title</key>
-      <value></value>
-    </param>
-    <param>
-      <key>author</key>
-      <value></value>
-    </param>
-    <param>
-      <key>description</key>
-      <value></value>
-    </param>
-    <param>
-      <key>window_size</key>
-      <value>1280, 1024</value>
-    </param>
-    <param>
-      <key>generate_options</key>
-      <value>wx_gui</value>
-    </param>
-    <param>
-      <key>category</key>
-      <value>Custom</value>
-    </param>
-    <param>
-      <key>run</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>realtime_scheduling</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(10, 10)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>import</key>
-    <param>
-      <key>id</key>
-      <value>import_0</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>import</key>
-      <value>import math</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(11, 59)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>variable</key>
-    <param>
-      <key>id</key>
-      <value>rs_taps</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>value</key>
-      <value>firdes.low_pass(nphases, nphases, frac_bw, 0.5-frac_bw)</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(273, 154)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>gr_add_const_vxx</key>
-    <param>
-      <key>id</key>
-      <value>adder</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>type</key>
-      <value>float</value>
-    </param>
-    <param>
-      <key>const</key>
-      <value>-1.0</value>
-    </param>
-    <param>
-      <key>vlen</key>
-      <value>1</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(227, 303)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>gr_throttle</key>
-    <param>
-      <key>id</key>
-      <value>throttle</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>type</key>
-      <value>float</value>
-    </param>
-    <param>
-      <key>samples_per_second</key>
-      <value>samp_rate</value>
-    </param>
-    <param>
-      <key>vlen</key>
-      <value>1</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(227, 493)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>wxgui_fftsink2</key>
-    <param>
-      <key>id</key>
-      <value>orig_fft</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>type</key>
-      <value>complex</value>
-    </param>
-    <param>
-      <key>title</key>
-      <value>Original Spectrum</value>
-    </param>
-    <param>
-      <key>samp_rate</key>
-      <value>samp_rate</value>
-    </param>
-    <param>
-      <key>baseband_freq</key>
-      <value>0</value>
-    </param>
-    <param>
-      <key>y_per_div</key>
-      <value>10</value>
-    </param>
-    <param>
-      <key>y_divs</key>
-      <value>10</value>
-    </param>
-    <param>
-      <key>ref_level</key>
-      <value>30</value>
-    </param>
-    <param>
-      <key>fft_size</key>
-      <value>1024</value>
-    </param>
-    <param>
-      <key>fft_rate</key>
-      <value>30</value>
-    </param>
-    <param>
-      <key>peak_hold</key>
-      <value>False</value>
-    </param>
-    <param>
-      <key>average</key>
-      <value>False</value>
-    </param>
-    <param>
-      <key>avg_alpha</key>
-      <value>0</value>
-    </param>
-    <param>
-      <key>grid_pos</key>
-      <value>1, 0, 1, 3</value>
-    </param>
-    <param>
-      <key>notebook</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(409, 289)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>180</value>
-    </param>
-  </block>
-  <block>
-    <key>wxgui_fftsink2</key>
-    <param>
-      <key>id</key>
-      <value>resamp_fft</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>type</key>
-      <value>complex</value>
-    </param>
-    <param>
-      <key>title</key>
-      <value>Resampled Spectrum</value>
-    </param>
-    <param>
-      <key>samp_rate</key>
-      <value>new_rate</value>
-    </param>
-    <param>
-      <key>baseband_freq</key>
-      <value>0</value>
-    </param>
-    <param>
-      <key>y_per_div</key>
-      <value>10</value>
-    </param>
-    <param>
-      <key>y_divs</key>
-      <value>10</value>
-    </param>
-    <param>
-      <key>ref_level</key>
-      <value>30</value>
-    </param>
-    <param>
-      <key>fft_size</key>
-      <value>1024</value>
-    </param>
-    <param>
-      <key>fft_rate</key>
-      <value>30</value>
-    </param>
-    <param>
-      <key>peak_hold</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>average</key>
-      <value>False</value>
-    </param>
-    <param>
-      <key>avg_alpha</key>
-      <value>0</value>
-    </param>
-    <param>
-      <key>grid_pos</key>
-      <value>2, 0, 1, 3</value>
-    </param>
-    <param>
-      <key>notebook</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(640, 256)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>180</value>
-    </param>
-  </block>
-  <block>
-    <key>gr_sig_source_x</key>
-    <param>
-      <key>id</key>
-      <value>tri_source</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>type</key>
-      <value>float</value>
-    </param>
-    <param>
-      <key>samp_rate</key>
-      <value>samp_rate</value>
-    </param>
-    <param>
-      <key>waveform</key>
-      <value>gr.GR_TRI_WAVE</value>
-    </param>
-    <param>
-      <key>freq</key>
-      <value>0.05</value>
-    </param>
-    <param>
-      <key>amp</key>
-      <value>2.0</value>
-    </param>
-    <param>
-      <key>offset</key>
-      <value>0</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(21, 271)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>gr_frequency_modulator_fc</key>
-    <param>
-      <key>id</key>
-      <value>fm_mod</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>sensitivity</key>
-      <value>math.pi</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(411, 493)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>blks2_pfb_arb_resampler_ccf</key>
-    <param>
-      <key>id</key>
-      <value>resampler</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>rate</key>
-      <value>float(new_rate)/samp_rate</value>
-    </param>
-    <param>
-      <key>taps</key>
-      <value>rs_taps</value>
-    </param>
-    <param>
-      <key>size</key>
-      <value>nphases</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(641, 477)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>variable</key>
-    <param>
-      <key>id</key>
-      <value>nphases</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>value</key>
-      <value>32</value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(185, 153)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>variable_static_text</key>
-    <param>
-      <key>id</key>
-      <value>samp_rate</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>label</key>
-      <value>Sample Rate</value>
-    </param>
-    <param>
-      <key>value</key>
-      <value>44100</value>
-    </param>
-    <param>
-      <key>converver</key>
-      <value>float_converter</value>
-    </param>
-    <param>
-      <key>formatter</key>
-      <value>None</value>
-    </param>
-    <param>
-      <key>grid_pos</key>
-      <value>0, 0, 1, 1</value>
-    </param>
-    <param>
-      <key>notebook</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(179, 14)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>variable_static_text</key>
-    <param>
-      <key>id</key>
-      <value>new_rate</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>label</key>
-      <value>Resampled Rate</value>
-    </param>
-    <param>
-      <key>value</key>
-      <value>48000</value>
-    </param>
-    <param>
-      <key>converver</key>
-      <value>float_converter</value>
-    </param>
-    <param>
-      <key>formatter</key>
-      <value>None</value>
-    </param>
-    <param>
-      <key>grid_pos</key>
-      <value>0, 1, 1, 1</value>
-    </param>
-    <param>
-      <key>notebook</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(328, 15)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <block>
-    <key>variable_static_text</key>
-    <param>
-      <key>id</key>
-      <value>frac_bw</value>
-    </param>
-    <param>
-      <key>_enabled</key>
-      <value>True</value>
-    </param>
-    <param>
-      <key>label</key>
-      <value>Fractional Bandwidth</value>
-    </param>
-    <param>
-      <key>value</key>
-      <value>0.45</value>
-    </param>
-    <param>
-      <key>converver</key>
-      <value>float_converter</value>
-    </param>
-    <param>
-      <key>formatter</key>
-      <value>lambda x: "%0.2f"%x</value>
-    </param>
-    <param>
-      <key>grid_pos</key>
-      <value>0,2,1,1</value>
-    </param>
-    <param>
-      <key>notebook</key>
-      <value></value>
-    </param>
-    <param>
-      <key>_coordinate</key>
-      <value>(473, 14)</value>
-    </param>
-    <param>
-      <key>_rotation</key>
-      <value>0</value>
-    </param>
-  </block>
-  <connection>
-    <source_block_id>tri_source</source_block_id>
-    <sink_block_id>adder</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-  <connection>
-    <source_block_id>adder</source_block_id>
-    <sink_block_id>throttle</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-  <connection>
-    <source_block_id>resampler</source_block_id>
-    <sink_block_id>resamp_fft</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-  <connection>
-    <source_block_id>fm_mod</source_block_id>
-    <sink_block_id>resampler</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-  <connection>
-    <source_block_id>fm_mod</source_block_id>
-    <sink_block_id>orig_fft</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-  <connection>
-    <source_block_id>throttle</source_block_id>
-    <sink_block_id>fm_mod</sink_block_id>
-    <source_key>0</source_key>
-    <sink_key>0</sink_key>
-  </connection>
-</flow_graph>
diff --git a/gnuradio-core/src/examples/pfb/synth_filter.py b/gnuradio-core/src/examples/pfb/synth_filter.py
deleted file mode 100755
index c0f7376ec0..0000000000
--- a/gnuradio-core/src/examples/pfb/synth_filter.py
+++ /dev/null
@@ -1,83 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
-    import scipy
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-def main():
-    N = 1000000
-    fs = 8000
-
-    freqs = [100, 200, 300, 400, 500]
-    nchans = 7
-
-    sigs = list()
-    for fi in freqs:
-        s = gr.sig_source_c(fs, gr.GR_SIN_WAVE, fi, 1)
-        sigs.append(s)
-
-    taps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
-    print "Num. Taps = %d (taps per filter = %d)" % (len(taps),
-                                                     len(taps)/nchans)
-    filtbank = gr.pfb_synthesizer_ccf(nchans, taps)
-
-    head = gr.head(gr.sizeof_gr_complex, N)
-    snk = gr.vector_sink_c()
-
-    tb = gr.top_block()
-    tb.connect(filtbank, head, snk)
-
-    for i,si in enumerate(sigs):
-        tb.connect(si, (filtbank, i))
-
-    tb.run()
-
-    if 1:
-        f1 = pylab.figure(1)
-        s1 = f1.add_subplot(1,1,1)
-        s1.plot(snk.data()[1000:])
-
-        fftlen = 2048
-        f2 = pylab.figure(2)
-        s2 = f2.add_subplot(1,1,1)
-        winfunc = scipy.blackman
-        s2.psd(snk.data()[10000:], NFFT=fftlen,
-               Fs = nchans*fs,
-               noverlap=fftlen/4,
-               window = lambda d: d*winfunc(fftlen))
-
-        pylab.show()
-
-if __name__ == "__main__":
-    main()
diff --git a/gnuradio-core/src/examples/pfb/synth_to_chan.py b/gnuradio-core/src/examples/pfb/synth_to_chan.py
deleted file mode 100755
index 18b2e7b53f..0000000000
--- a/gnuradio-core/src/examples/pfb/synth_to_chan.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys
-
-try:
-    import scipy
-except ImportError:
-    print "Error: Program requires scipy (see: www.scipy.org)."
-    sys.exit(1)
-
-try:
-    import pylab
-except ImportError:
-    print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
-    sys.exit(1)
-
-def main():
-    N = 1000000
-    fs = 8000
-
-    freqs = [100, 200, 300, 400, 500]
-    nchans = 7
-
-    sigs = list()
-    fmtx = list()
-    for fi in freqs:
-        s = gr.sig_source_f(fs, gr.GR_SIN_WAVE, fi, 1)
-        fm = blks2.nbfm_tx (fs, 4*fs, max_dev=10000, tau=75e-6)
-        sigs.append(s)
-        fmtx.append(fm)
-
-    syntaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
-    print "Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps),
-                                                               len(syntaps)/nchans)
-    chtaps = gr.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100)
-    print "Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps),
-                                                                 len(chtaps)/nchans)
-    filtbank = gr.pfb_synthesizer_ccf(nchans, syntaps)
-    channelizer = blks2.pfb_channelizer_ccf(nchans, chtaps)
-
-    noise_level = 0.01
-    head = gr.head(gr.sizeof_gr_complex, N)
-    noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level)
-    addnoise = gr.add_cc()
-    snk_synth = gr.vector_sink_c()
-
-    tb = gr.top_block()
-
-    tb.connect(noise, (addnoise,0))
-    tb.connect(filtbank, head, (addnoise, 1))
-    tb.connect(addnoise, channelizer)
-    tb.connect(addnoise, snk_synth)
-
-    snk = list()
-    for i,si in enumerate(sigs):
-        tb.connect(si, fmtx[i], (filtbank, i))
-
-    for i in xrange(nchans):
-        snk.append(gr.vector_sink_c())
-        tb.connect((channelizer, i), snk[i])
-
-    tb.run()
-
-    if 1:
-        channel = 1
-        data = snk[channel].data()[1000:]
-
-        f1 = pylab.figure(1)
-        s1 = f1.add_subplot(1,1,1)
-        s1.plot(data[10000:10200] )
-        s1.set_title(("Output Signal from Channel %d" % channel))
-
-        fftlen = 2048
-        winfunc = scipy.blackman
-        #winfunc = scipy.hamming
-
-        f2 = pylab.figure(2)
-        s2 = f2.add_subplot(1,1,1)
-        s2.psd(data, NFFT=fftlen,
-               Fs = nchans*fs,
-               noverlap=fftlen/4,
-               window = lambda d: d*winfunc(fftlen))
-        s2.set_title(("Output PSD from Channel %d" % channel))
-
-        f3 = pylab.figure(3)
-        s3 = f3.add_subplot(1,1,1)
-        s3.psd(snk_synth.data()[1000:], NFFT=fftlen,
-               Fs = nchans*fs,
-               noverlap=fftlen/4,
-               window = lambda d: d*winfunc(fftlen))
-        s3.set_title("Output of Synthesis Filter")
-
-        pylab.show()
-
-if __name__ == "__main__":
-    main()
-- 
cgit v1.2.3