summaryrefslogtreecommitdiff
path: root/gr-vocoder/lib/codec2/quantise.c
diff options
context:
space:
mode:
Diffstat (limited to 'gr-vocoder/lib/codec2/quantise.c')
-rw-r--r--gr-vocoder/lib/codec2/quantise.c1970
1 files changed, 0 insertions, 1970 deletions
diff --git a/gr-vocoder/lib/codec2/quantise.c b/gr-vocoder/lib/codec2/quantise.c
deleted file mode 100644
index f7326c4fcd..0000000000
--- a/gr-vocoder/lib/codec2/quantise.c
+++ /dev/null
@@ -1,1970 +0,0 @@
-/*---------------------------------------------------------------------------*\
-
- FILE........: quantise.c
- AUTHOR......: David Rowe
- DATE CREATED: 31/5/92
-
- Quantisation functions for the sinusoidal coder.
-
-\*---------------------------------------------------------------------------*/
-
-/*
- All rights reserved.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License version 2.1, as
- published by the Free Software Foundation. This program is
- distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- You should have received a copy of the GNU Lesser General Public License
- along with this program; if not, see <http://www.gnu.org/licenses/>.
-
-*/
-
-#include <assert.h>
-#include <ctype.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <math.h>
-
-#include "defines.h"
-#include "dump.h"
-#include "quantise.h"
-#include "lpc.h"
-#include "lsp.h"
-#include "kiss_fft.h"
-#undef TIMER
-#include "machdep.h"
-
-#define LSP_DELTA1 0.01 /* grid spacing for LSP root searches */
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION HEADERS
-
-\*---------------------------------------------------------------------------*/
-
-float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[],
- int order);
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTIONS
-
-\*---------------------------------------------------------------------------*/
-
-int lsp_bits(int i) {
- return lsp_cb[i].log2m;
-}
-
-int lspd_bits(int i) {
- return lsp_cbd[i].log2m;
-}
-
-#ifdef __EXPERIMENTAL__
-int lspdt_bits(int i) {
- return lsp_cbdt[i].log2m;
-}
-#endif
-
-int lsp_pred_vq_bits(int i) {
- return lsp_cbjvm[i].log2m;
-}
-
-/*---------------------------------------------------------------------------*\
-
- quantise_init
-
- Loads the entire LSP quantiser comprised of several vector quantisers
- (codebooks).
-
-\*---------------------------------------------------------------------------*/
-
-void quantise_init()
-{
-}
-
-/*---------------------------------------------------------------------------*\
-
- quantise
-
- Quantises vec by choosing the nearest vector in codebook cb, and
- returns the vector index. The squared error of the quantised vector
- is added to se.
-
-\*---------------------------------------------------------------------------*/
-
-long quantise(const float * cb, float vec[], float w[], int k, int m, float *se)
-/* float cb[][K]; current VQ codebook */
-/* float vec[]; vector to quantise */
-/* float w[]; weighting vector */
-/* int k; dimension of vectors */
-/* int m; size of codebook */
-/* float *se; accumulated squared error */
-{
- float e; /* current error */
- long besti; /* best index so far */
- float beste; /* best error so far */
- long j;
- int i;
- float diff;
-
- besti = 0;
- beste = 1E32;
- for(j=0; j<m; j++) {
- e = 0.0;
- for(i=0; i<k; i++) {
- diff = cb[j*k+i]-vec[i];
- e += powf(diff*w[i],2.0);
- }
- if (e < beste) {
- beste = e;
- besti = j;
- }
- }
-
- *se += beste;
-
- return(besti);
-}
-
-/*---------------------------------------------------------------------------*\
-
- encode_lspds_scalar()
-
- Scalar/VQ LSP difference quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-void encode_lspds_scalar(
- int indexes[],
- float lsp[],
- int order
-)
-{
- int i,k,m;
- float lsp_hz[LPC_MAX];
- float lsp__hz[LPC_MAX];
- float dlsp[LPC_MAX];
- float dlsp_[LPC_MAX];
- float wt[LPC_MAX];
- const float *cb;
- float se = 0.0f;
-
- assert(order == LPC_ORD);
-
- for(i=0; i<order; i++) {
- wt[i] = 1.0;
- }
-
- /* convert from radians to Hz so we can use human readable
- frequencies */
-
- for(i=0; i<order; i++)
- lsp_hz[i] = (4000.0/PI)*lsp[i];
-
- //printf("\n");
-
- wt[0] = 1.0;
- for(i=0; i<order; i++) {
-
- /* find difference from previous qunatised lsp */
-
- if (i)
- dlsp[i] = lsp_hz[i] - lsp__hz[i-1];
- else
- dlsp[0] = lsp_hz[0];
-
- k = lsp_cbd[i].k;
- m = lsp_cbd[i].m;
- cb = lsp_cbd[i].cb;
- indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se);
- dlsp_[i] = cb[indexes[i]*k];
-
-
- if (i)
- lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
- else
- lsp__hz[0] = dlsp_[0];
-
- //printf("%d lsp %3.2f dlsp %3.2f dlsp_ %3.2f lsp_ %3.2f\n", i, lsp_hz[i], dlsp[i], dlsp_[i], lsp__hz[i]);
- }
-
-}
-
-void decode_lspds_scalar(
- float lsp_[],
- int indexes[],
- int order
-)
-{
- int i,k;
- float lsp__hz[LPC_MAX];
- float dlsp_[LPC_MAX];
- const float *cb;
-
- assert(order == LPC_ORD);
-
- for(i=0; i<order; i++) {
-
- k = lsp_cbd[i].k;
- cb = lsp_cbd[i].cb;
- dlsp_[i] = cb[indexes[i]*k];
-
- if (i)
- lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
- else
- lsp__hz[0] = dlsp_[0];
-
- lsp_[i] = (PI/4000.0)*lsp__hz[i];
-
- //printf("%d dlsp_ %3.2f lsp_ %3.2f\n", i, dlsp_[i], lsp__hz[i]);
- }
-
-}
-
-#ifdef __EXPERIMENTAL__
-/*---------------------------------------------------------------------------*\
-
- lspvq_quantise
-
- Vector LSP quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-void lspvq_quantise(
- float lsp[],
- float lsp_[],
- int order
-)
-{
- int i,k,m,ncb, nlsp;
- float wt[LPC_ORD], lsp_hz[LPC_ORD];
- const float *cb;
- float se = 0.0f;
- int index;
-
- for(i=0; i<LPC_ORD; i++) {
- wt[i] = 1.0;
- lsp_hz[i] = 4000.0*lsp[i]/PI;
- }
-
- /* scalar quantise LSPs 1,2,3,4 */
-
- /* simple uniform scalar quantisers */
-
- for(i=0; i<4; i++) {
- k = lsp_cb[i].k;
- m = lsp_cb[i].m;
- cb = lsp_cb[i].cb;
- index = quantise(cb, &lsp_hz[i], wt, k, m, &se);
- lsp_[i] = cb[index*k]*PI/4000.0;
- }
-
- //#define WGHT
-#ifdef WGHT
- for(i=4; i<9; i++) {
- wt[i] = 1.0/(lsp[i]-lsp[i-1]) + 1.0/(lsp[i+1]-lsp[i]);
- //printf("wt[%d] = %f\n", i, wt[i]);
- }
- wt[9] = 1.0/(lsp[i]-lsp[i-1]);
-#endif
-
- /* VQ LSPs 5,6,7,8,9,10 */
-
- ncb = 4;
- nlsp = 4;
- k = lsp_cbjnd[ncb].k;
- m = lsp_cbjnd[ncb].m;
- cb = lsp_cbjnd[ncb].cb;
- index = quantise(cb, &lsp_hz[nlsp], &wt[nlsp], k, m, &se);
- for(i=4; i<LPC_ORD; i++) {
- lsp_[i] = cb[index*k+i-4]*(PI/4000.0);
- //printf("%4.f (%4.f) ", lsp_hz[i], cb[index*k+i-4]);
- }
-}
-
-/*---------------------------------------------------------------------------*\
-
- lspjnd_quantise
-
- Experimental JND LSP quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-void lspjnd_quantise(float lsps[], float lsps_[], int order)
-{
- int i,k,m;
- float wt[LPC_ORD], lsps_hz[LPC_ORD];
- const float *cb;
- float se = 0.0f;
- int index;
-
- for(i=0; i<LPC_ORD; i++) {
- wt[i] = 1.0;
- }
-
- /* convert to Hz */
-
- for(i=0; i<LPC_ORD; i++) {
- lsps_hz[i] = lsps[i]*(4000.0/PI);
- lsps_[i] = lsps[i];
- }
-
- /* simple uniform scalar quantisers */
-
- for(i=0; i<4; i++) {
- k = lsp_cbjnd[i].k;
- m = lsp_cbjnd[i].m;
- cb = lsp_cbjnd[i].cb;
- index = quantise(cb, &lsps_hz[i], wt, k, m, &se);
- lsps_[i] = cb[index*k]*(PI/4000.0);
- }
-
- /* VQ LSPs 5,6,7,8,9,10 */
-
- k = lsp_cbjnd[4].k;
- m = lsp_cbjnd[4].m;
- cb = lsp_cbjnd[4].cb;
- index = quantise(cb, &lsps_hz[4], &wt[4], k, m, &se);
- //printf("k = %d m = %d c[0] %f cb[k] %f\n", k,m,cb[0],cb[k]);
- //printf("index = %4d: ", index);
- for(i=4; i<LPC_ORD; i++) {
- lsps_[i] = cb[index*k+i-4]*(PI/4000.0);
- //printf("%4.f (%4.f) ", lsps_hz[i], cb[index*k+i-4]);
- }
- //printf("\n");
-}
-
-void compute_weights(const float *x, float *w, int ndim);
-
-/*---------------------------------------------------------------------------*\
-
- lspdt_quantise
-
- LSP difference in time quantiser. Split VQ, encoding LSPs 1-4 with
- one VQ, and LSPs 5-10 with a second. Update of previous lsp memory
- is done outside of this function to handle dT between 10 or 20ms
- frames.
-
- mode action
- ------------------
-
- LSPDT_ALL VQ LSPs 1-4 and 5-10
- LSPDT_LOW Just VQ LSPs 1-4, for LSPs 5-10 just copy previous
- LSPDT_HIGH Just VQ LSPs 5-10, for LSPs 1-4 just copy previous
-
-\*---------------------------------------------------------------------------*/
-
-void lspdt_quantise(float lsps[], float lsps_[], float lsps__prev[], int mode)
-{
- int i;
- float wt[LPC_ORD];
- float lsps_dt[LPC_ORD];
-#ifdef TRY_LSPDT_VQ
- int k,m;
- int index;
- const float *cb;
- float se = 0.0f;
-#endif // TRY_LSPDT_VQ
-
- //compute_weights(lsps, wt, LPC_ORD);
- for(i=0; i<LPC_ORD; i++) {
- wt[i] = 1.0;
- }
-
- //compute_weights(lsps, wt, LPC_ORD );
-
- for(i=0; i<LPC_ORD; i++) {
- lsps_dt[i] = lsps[i] - lsps__prev[i];
- lsps_[i] = lsps__prev[i];
- }
-
- //#define TRY_LSPDT_VQ
-#ifdef TRY_LSPDT_VQ
- /* this actually improves speech a bit, but 40ms updates works surprsingly well.... */
- k = lsp_cbdt[0].k;
- m = lsp_cbdt[0].m;
- cb = lsp_cbdt[0].cb;
- index = quantise(cb, lsps_dt, wt, k, m, &se);
- for(i=0; i<LPC_ORD; i++) {
- lsps_[i] += cb[index*k + i];
- }
-#endif
-
-}
-#endif
-
-#define MIN(a,b) ((a)<(b)?(a):(b))
-#define MAX_ENTRIES 16384
-
-void compute_weights(const float *x, float *w, int ndim)
-{
- int i;
- w[0] = MIN(x[0], x[1]-x[0]);
- for (i=1;i<ndim-1;i++)
- w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
- w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]);
-
- for (i=0;i<ndim;i++)
- w[i] = 1./(.01+w[i]);
- //w[0]*=3;
- //w[1]*=2;
-}
-
-/* LSP weight calculation ported from m-file function kindly submitted
- by Anssi, OH3GDD */
-
-void compute_weights_anssi_mode2(const float *x, float *w, int ndim)
-{
- int i;
- float d[LPC_ORD];
-
- assert(ndim == LPC_ORD);
-
- for(i=0; i<LPC_ORD; i++)
- d[i] = 1.0;
-
- d[0] = x[1];
- for (i=1; i<LPC_ORD-1; i++)
- d[i] = x[i+1] - x[i-1];
- d[LPC_ORD-1] = PI - x[8];
- for (i=0; i<LPC_ORD; i++) {
- if (x[i]<((400.0/4000.0)*PI))
- w[i]=5.0/(0.01+d[i]);
- else if (x[i]<((700.0/4000.0)*PI))
- w[i]=4.0/(0.01+d[i]);
- else if (x[i]<((1200.0/4000.0)*PI))
- w[i]=3.0/(0.01+d[i]);
- else if (x[i]<((2000.0/4000.0)*PI))
- w[i]=2.0/(0.01+d[i]);
- else
- w[i]=1.0/(0.01+d[i]);
-
- w[i]=pow(w[i]+0.3, 0.66);
- }
-}
-
-int find_nearest(const float *codebook, int nb_entries, float *x, int ndim)
-{
- int i, j;
- float min_dist = 1e15;
- int nearest = 0;
-
- for (i=0;i<nb_entries;i++)
- {
- float dist=0;
- for (j=0;j<ndim;j++)
- dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
- if (dist<min_dist)
- {
- min_dist = dist;
- nearest = i;
- }
- }
- return nearest;
-}
-
-int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim)
-{
- int i, j;
- float min_dist = 1e15;
- int nearest = 0;
-
- for (i=0;i<nb_entries;i++)
- {
- float dist=0;
- for (j=0;j<ndim;j++)
- dist += w[j]*(x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
- if (dist<min_dist)
- {
- min_dist = dist;
- nearest = i;
- }
- }
- return nearest;
-}
-
-void lspjvm_quantise(float *x, float *xq, int ndim)
-{
- int i, n1, n2, n3;
- float err[LPC_ORD], err2[LPC_ORD], err3[LPC_ORD];
- float w[LPC_ORD], w2[LPC_ORD], w3[LPC_ORD];
- const float *codebook1 = lsp_cbjvm[0].cb;
- const float *codebook2 = lsp_cbjvm[1].cb;
- const float *codebook3 = lsp_cbjvm[2].cb;
-
- w[0] = MIN(x[0], x[1]-x[0]);
- for (i=1;i<ndim-1;i++)
- w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
- w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]);
-
- compute_weights(x, w, ndim);
-
- n1 = find_nearest(codebook1, lsp_cbjvm[0].m, x, ndim);
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = codebook1[ndim*n1+i];
- err[i] = x[i] - xq[i];
- }
- for (i=0;i<ndim/2;i++)
- {
- err2[i] = err[2*i];
- err3[i] = err[2*i+1];
- w2[i] = w[2*i];
- w3[i] = w[2*i+1];
- }
- n2 = find_nearest_weighted(codebook2, lsp_cbjvm[1].m, err2, w2, ndim/2);
- n3 = find_nearest_weighted(codebook3, lsp_cbjvm[2].m, err3, w3, ndim/2);
-
- for (i=0;i<ndim/2;i++)
- {
- xq[2*i] += codebook2[ndim*n2/2+i];
- xq[2*i+1] += codebook3[ndim*n3/2+i];
- }
-}
-
-#ifdef __EXPERIMENTAL__
-
-#define MBEST_STAGES 4
-
-struct MBEST_LIST {
- int index[MBEST_STAGES]; /* index of each stage that lead us to this error */
- float error;
-};
-
-struct MBEST {
- int entries; /* number of entries in mbest list */
- struct MBEST_LIST *list;
-};
-
-
-static struct MBEST *mbest_create(int entries) {
- int i,j;
- struct MBEST *mbest;
-
- assert(entries > 0);
- mbest = (struct MBEST *)malloc(sizeof(struct MBEST));
- assert(mbest != NULL);
-
- mbest->entries = entries;
- mbest->list = (struct MBEST_LIST *)malloc(entries*sizeof(struct MBEST_LIST));
- assert(mbest->list != NULL);
-
- for(i=0; i<mbest->entries; i++) {
- for(j=0; j<MBEST_STAGES; j++)
- mbest->list[i].index[j] = 0;
- mbest->list[i].error = 1E32;
- }
-
- return mbest;
-}
-
-
-static void mbest_destroy(struct MBEST *mbest) {
- assert(mbest != NULL);
- free(mbest->list);
- free(mbest);
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- mbest_insert
-
- Insert the results of a vector to codebook entry comparison. The
- list is ordered in order or error, so those entries with the
- smallest error will be first on the list.
-
-\*---------------------------------------------------------------------------*/
-
-static void mbest_insert(struct MBEST *mbest, int index[], float error) {
- int i, j, found;
- struct MBEST_LIST *list = mbest->list;
- int entries = mbest->entries;
-
- found = 0;
- for(i=0; i<entries && !found; i++)
- if (error < list[i].error) {
- found = 1;
- for(j=entries-1; j>i; j--)
- list[j] = list[j-1];
- for(j=0; j<MBEST_STAGES; j++)
- list[i].index[j] = index[j];
- list[i].error = error;
- }
-}
-
-
-static void mbest_print(char title[], struct MBEST *mbest) {
- int i,j;
-
- printf("%s\n", title);
- for(i=0; i<mbest->entries; i++) {
- for(j=0; j<MBEST_STAGES; j++)
- printf(" %4d ", mbest->list[i].index[j]);
- printf(" %f\n", mbest->list[i].error);
- }
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- mbest_search
-
- Searches vec[] to a codebbook of vectors, and maintains a list of the mbest
- closest matches.
-
-\*---------------------------------------------------------------------------*/
-
-static void mbest_search(
- const float *cb, /* VQ codebook to search */
- float vec[], /* target vector */
- float w[], /* weighting vector */
- int k, /* dimension of vector */
- int m, /* number on entries in codebook */
- struct MBEST *mbest, /* list of closest matches */
- int index[] /* indexes that lead us here */
-)
-{
- float e;
- int i,j;
- float diff;
-
- for(j=0; j<m; j++) {
- e = 0.0;
- for(i=0; i<k; i++) {
- diff = cb[j*k+i]-vec[i];
- e += pow(diff*w[i],2.0);
- }
- index[0] = j;
- mbest_insert(mbest, index, e);
- }
-}
-
-
-/* 3 stage VQ LSP quantiser. Design and guidance kindly submitted by Anssi, OH3GDD */
-
-void lspanssi_quantise(float *x, float *xq, int ndim, int mbest_entries)
-{
- int i, j, n1, n2, n3, n4;
- float w[LPC_ORD];
- const float *codebook1 = lsp_cbvqanssi[0].cb;
- const float *codebook2 = lsp_cbvqanssi[1].cb;
- const float *codebook3 = lsp_cbvqanssi[2].cb;
- const float *codebook4 = lsp_cbvqanssi[3].cb;
- struct MBEST *mbest_stage1, *mbest_stage2, *mbest_stage3, *mbest_stage4;
- float target[LPC_ORD];
- int index[MBEST_STAGES];
-
- mbest_stage1 = mbest_create(mbest_entries);
- mbest_stage2 = mbest_create(mbest_entries);
- mbest_stage3 = mbest_create(mbest_entries);
- mbest_stage4 = mbest_create(mbest_entries);
- for(i=0; i<MBEST_STAGES; i++)
- index[i] = 0;
-
- compute_weights_anssi_mode2(x, w, ndim);
-
- #ifdef DUMP
- dump_weights(w, ndim);
- #endif
-
- /* Stage 1 */
-
- mbest_search(codebook1, x, w, ndim, lsp_cbvqanssi[0].m, mbest_stage1, index);
- mbest_print("Stage 1:", mbest_stage1);
-
- /* Stage 2 */
-
- for (j=0; j<mbest_entries; j++) {
- index[1] = n1 = mbest_stage1->list[j].index[0];
- for(i=0; i<ndim; i++)
- target[i] = x[i] - codebook1[ndim*n1+i];
- mbest_search(codebook2, target, w, ndim, lsp_cbvqanssi[1].m, mbest_stage2, index);
- }
- mbest_print("Stage 2:", mbest_stage2);
-
- /* Stage 3 */
-
- for (j=0; j<mbest_entries; j++) {
- index[2] = n1 = mbest_stage2->list[j].index[1];
- index[1] = n2 = mbest_stage2->list[j].index[0];
- for(i=0; i<ndim; i++)
- target[i] = x[i] - codebook1[ndim*n1+i] - codebook2[ndim*n2+i];
- mbest_search(codebook3, target, w, ndim, lsp_cbvqanssi[2].m, mbest_stage3, index);
- }
- mbest_print("Stage 3:", mbest_stage3);
-
- /* Stage 4 */
-
- for (j=0; j<mbest_entries; j++) {
- index[3] = n1 = mbest_stage3->list[j].index[2];
- index[2] = n2 = mbest_stage3->list[j].index[1];
- index[1] = n3 = mbest_stage3->list[j].index[0];
- for(i=0; i<ndim; i++)
- target[i] = x[i] - codebook1[ndim*n1+i] - codebook2[ndim*n2+i] - codebook3[ndim*n3+i];
- mbest_search(codebook4, target, w, ndim, lsp_cbvqanssi[3].m, mbest_stage4, index);
- }
- mbest_print("Stage 4:", mbest_stage4);
-
- n1 = mbest_stage4->list[0].index[3];
- n2 = mbest_stage4->list[0].index[2];
- n3 = mbest_stage4->list[0].index[1];
- n4 = mbest_stage4->list[0].index[0];
- for (i=0;i<ndim;i++)
- xq[i] = codebook1[ndim*n1+i] + codebook2[ndim*n2+i] + codebook3[ndim*n3+i] + codebook4[ndim*n4+i];
-
- mbest_destroy(mbest_stage1);
- mbest_destroy(mbest_stage2);
- mbest_destroy(mbest_stage3);
- mbest_destroy(mbest_stage4);
-}
-#endif
-
-int check_lsp_order(float lsp[], int lpc_order)
-{
- int i;
- float tmp;
- int swaps = 0;
-
- for(i=1; i<lpc_order; i++)
- if (lsp[i] < lsp[i-1]) {
- //fprintf(stderr, "swap %d\n",i);
- swaps++;
- tmp = lsp[i-1];
- lsp[i-1] = lsp[i]-0.1;
- lsp[i] = tmp+0.1;
- i = 1; /* start check again, as swap may have caused out of order */
- }
-
- return swaps;
-}
-
-void force_min_lsp_dist(float lsp[], int lpc_order)
-{
- int i;
-
- for(i=1; i<lpc_order; i++)
- if ((lsp[i]-lsp[i-1]) < 0.01) {
- lsp[i] += 0.01;
- }
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- lpc_post_filter()
-
- Applies a post filter to the LPC synthesis filter power spectrum
- Pw, which supresses the inter-formant energy.
-
- The algorithm is from p267 (Section 8.6) of "Digital Speech",
- edited by A.M. Kondoz, 1994 published by Wiley and Sons. Chapter 8
- of this text is on the MBE vocoder, and this is a freq domain
- adaptation of post filtering commonly used in CELP.
-
- I used the Octave simulation lpcpf.m to get an understaing of the
- algorithm.
-
- Requires two more FFTs which is significantly more MIPs. However
- it should be possible to implement this more efficiently in the
- time domain. Just not sure how to handle relative time delays
- between the synthesis stage and updating these coeffs. A smaller
- FFT size might also be accetable to save CPU.
-
- TODO:
- [ ] sync var names between Octave and C version
- [ ] doc gain normalisation
- [ ] I think the first FFT is not rqd as we do the same
- thing in aks_to_M2().
-
-\*---------------------------------------------------------------------------*/
-
-void lpc_post_filter(kiss_fft_cfg fft_fwd_cfg, MODEL *model, COMP Pw[], float ak[],
- int order, int dump, float beta, float gamma, int bass_boost)
-{
- int i;
- COMP x[FFT_ENC]; /* input to FFTs */
- COMP Aw[FFT_ENC]; /* LPC analysis filter spectrum */
- COMP Ww[FFT_ENC]; /* weighting spectrum */
- float Rw[FFT_ENC]; /* R = WA */
- float e_before, e_after, gain;
- float Pfw[FFT_ENC]; /* Post filter mag spectrum */
- float max_Rw, min_Rw;
- float coeff;
- TIMER_VAR(tstart, tfft1, taw, tfft2, tww, tr);
-
- TIMER_SAMPLE(tstart);
-
- /* Determine LPC inverse filter spectrum 1/A(exp(jw)) -----------*/
-
- /* we actually want the synthesis filter A(exp(jw)) but the
- inverse (analysis) filter is easier to find as it's FIR, we
- just use the inverse of 1/A to get the synthesis filter
- A(exp(jw)) */
-
- for(i=0; i<FFT_ENC; i++) {
- x[i].real = 0.0;
- x[i].imag = 0.0;
- }
-
- for(i=0; i<=order; i++)
- x[i].real = ak[i];
- kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)x, (kiss_fft_cpx *)Aw);
-
- TIMER_SAMPLE_AND_LOG(tfft1, tstart, " fft1");
-
- for(i=0; i<FFT_ENC/2; i++) {
- Aw[i].real = 1.0/(Aw[i].real*Aw[i].real + Aw[i].imag*Aw[i].imag);
- }
-
- TIMER_SAMPLE_AND_LOG(taw, tfft1, " Aw");
-
- /* Determine weighting filter spectrum W(exp(jw)) ---------------*/
-
- for(i=0; i<FFT_ENC; i++) {
- x[i].real = 0.0;
- x[i].imag = 0.0;
- }
-
- x[0].real = ak[0];
- coeff = gamma;
- for(i=1; i<=order; i++) {
- x[i].real = ak[i] * coeff;
- coeff *= gamma;
- }
- kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)x, (kiss_fft_cpx *)Ww);
-
- TIMER_SAMPLE_AND_LOG(tfft2, taw, " fft2");
-
- for(i=0; i<FFT_ENC/2; i++) {
- Ww[i].real = Ww[i].real*Ww[i].real + Ww[i].imag*Ww[i].imag;
- }
-
- TIMER_SAMPLE_AND_LOG(tww, tfft2, " Ww");
-
- /* Determined combined filter R = WA ---------------------------*/
-
- max_Rw = 0.0; min_Rw = 1E32;
- for(i=0; i<FFT_ENC/2; i++) {
- Rw[i] = sqrtf(Ww[i].real * Aw[i].real);
- if (Rw[i] > max_Rw)
- max_Rw = Rw[i];
- if (Rw[i] < min_Rw)
- min_Rw = Rw[i];
-
- }
-
- TIMER_SAMPLE_AND_LOG(tr, tww, " R");
-
- #ifdef DUMP
- if (dump)
- dump_Rw(Rw);
- #endif
-
- /* create post filter mag spectrum and apply ------------------*/
-
- /* measure energy before post filtering */
-
- e_before = 1E-4;
- for(i=0; i<FFT_ENC/2; i++)
- e_before += Pw[i].real;
-
- /* apply post filter and measure energy */
-
- #ifdef DUMP
- if (dump)
- dump_Pwb(Pw);
- #endif
-
- e_after = 1E-4;
- for(i=0; i<FFT_ENC/2; i++) {
- Pfw[i] = powf(Rw[i], beta);
- Pw[i].real *= Pfw[i] * Pfw[i];
- e_after += Pw[i].real;
- }
- gain = e_before/e_after;
-
- /* apply gain factor to normalise energy */
-
- for(i=0; i<FFT_ENC/2; i++) {
- Pw[i].real *= gain;
- }
-
- if (bass_boost) {
- /* add 3dB to first 1 kHz to account for LP effect of PF */
-
- for(i=0; i<FFT_ENC/8; i++) {
- Pw[i].real *= 1.4*1.4;
- }
- }
-
- TIMER_SAMPLE_AND_LOG2(tr, " filt");
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- aks_to_M2()
-
- Transforms the linear prediction coefficients to spectral amplitude
- samples. This function determines A(m) from the average energy per
- band using an FFT.
-
-\*---------------------------------------------------------------------------*/
-
-void aks_to_M2(
- kiss_fft_cfg fft_fwd_cfg,
- float ak[], /* LPC's */
- int order,
- MODEL *model, /* sinusoidal model parameters for this frame */
- float E, /* energy term */
- float *snr, /* signal to noise ratio for this frame in dB */
- int dump, /* true to dump sample to dump file */
- int sim_pf, /* true to simulate a post filter */
- int pf, /* true to LPC post filter */
- int bass_boost, /* enable LPC filter 0-1khz 3dB boost */
- float beta,
- float gamma /* LPC post filter parameters */
-)
-{
- COMP pw[FFT_ENC]; /* input to FFT for power spectrum */
- COMP Pw[FFT_ENC]; /* output power spectrum */
- int i,m; /* loop variables */
- int am,bm; /* limits of current band */
- float r; /* no. rads/bin */
- float Em; /* energy in band */
- float Am; /* spectral amplitude sample */
- float signal, noise;
- TIMER_VAR(tstart, tfft, tpw, tpf);
-
- TIMER_SAMPLE(tstart);
-
- r = TWO_PI/(FFT_ENC);
-
- /* Determine DFT of A(exp(jw)) --------------------------------------------*/
-
- for(i=0; i<FFT_ENC; i++) {
- pw[i].real = 0.0;
- pw[i].imag = 0.0;
- }
-
- for(i=0; i<=order; i++)
- pw[i].real = ak[i];
- kiss_fft(fft_fwd_cfg, (kiss_fft_cpx *)pw, (kiss_fft_cpx *)Pw);
-
- TIMER_SAMPLE_AND_LOG(tfft, tstart, " fft");
-
- /* Determine power spectrum P(w) = E/(A(exp(jw))^2 ------------------------*/
-
- for(i=0; i<FFT_ENC/2; i++)
- Pw[i].real = E/(Pw[i].real*Pw[i].real + Pw[i].imag*Pw[i].imag);
-
- TIMER_SAMPLE_AND_LOG(tpw, tfft, " Pw");
-
- if (pf)
- lpc_post_filter(fft_fwd_cfg, model, Pw, ak, order, dump, beta, gamma, bass_boost);
-
- TIMER_SAMPLE_AND_LOG(tpf, tpw, " LPC post filter");
-
- #ifdef DUMP
- if (dump)
- dump_Pw(Pw);
- #endif
-
- /* Determine magnitudes from P(w) ----------------------------------------*/
-
- /* when used just by decoder {A} might be all zeroes so init signal
- and noise to prevent log(0) errors */
-
- signal = 1E-30; noise = 1E-32;
-
- for(m=1; m<=model->L; m++) {
- am = (int)((m - 0.5)*model->Wo/r + 0.5);
- bm = (int)((m + 0.5)*model->Wo/r + 0.5);
- Em = 0.0;
-
- for(i=am; i<bm; i++)
- Em += Pw[i].real;
- Am = sqrtf(Em);
-
- signal += model->A[m]*model->A[m];
- noise += (model->A[m] - Am)*(model->A[m] - Am);
-
- /* This code significantly improves perf of LPC model, in
- particular when combined with phase0. The LPC spectrum tends
- to track just under the peaks of the spectral envelope, and
- just above nulls. This algorithm does the reverse to
- compensate - raising the amplitudes of spectral peaks, while
- attenuating the null. This enhances the formants, and
- supresses the energy between formants. */
-
- if (sim_pf) {
- if (Am > model->A[m])
- Am *= 0.7;
- if (Am < model->A[m])
- Am *= 1.4;
- }
-
- model->A[m] = Am;
- }
- *snr = 10.0*log10f(signal/noise);
-
- TIMER_SAMPLE_AND_LOG2(tpf, " rec");
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_Wo()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Encodes Wo using a WO_LEVELS quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-int encode_Wo(float Wo)
-{
- int index;
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
- float norm;
-
- norm = (Wo - Wo_min)/(Wo_max - Wo_min);
- index = floorf(WO_LEVELS * norm + 0.5);
- if (index < 0 ) index = 0;
- if (index > (WO_LEVELS-1)) index = WO_LEVELS-1;
-
- return index;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_Wo()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Decodes Wo using a WO_LEVELS quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-float decode_Wo(int index)
-{
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
- float step;
- float Wo;
-
- step = (Wo_max - Wo_min)/WO_LEVELS;
- Wo = Wo_min + step*(index);
-
- return Wo;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_Wo_dt()
- AUTHOR......: David Rowe
- DATE CREATED: 6 Nov 2011
-
- Encodes Wo difference from last frame.
-
-\*---------------------------------------------------------------------------*/
-
-int encode_Wo_dt(float Wo, float prev_Wo)
-{
- int index, mask, max_index, min_index;
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
- float norm;
-
- norm = (Wo - prev_Wo)/(Wo_max - Wo_min);
- index = floor(WO_LEVELS * norm + 0.5);
- //printf("ENC index: %d ", index);
-
- /* hard limit */
-
- max_index = (1 << (WO_DT_BITS-1)) - 1;
- min_index = - (max_index+1);
- if (index > max_index) index = max_index;
- if (index < min_index) index = min_index;
- //printf("max_index: %d min_index: %d hard index: %d ",
- // max_index, min_index, index);
-
- /* mask so that only LSB WO_DT_BITS remain, bit WO_DT_BITS is the sign bit */
-
- mask = ((1 << WO_DT_BITS) - 1);
- index &= mask;
- //printf("mask: 0x%x index: 0x%x\n", mask, index);
-
- return index;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_Wo_dt()
- AUTHOR......: David Rowe
- DATE CREATED: 6 Nov 2011
-
- Decodes Wo using WO_DT_BITS difference from last frame.
-
-\*---------------------------------------------------------------------------*/
-
-float decode_Wo_dt(int index, float prev_Wo)
-{
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
- float step;
- float Wo;
- int mask;
-
- /* sign extend index */
-
- //printf("DEC index: %d ");
- if (index & (1 << (WO_DT_BITS-1))) {
- mask = ~((1 << WO_DT_BITS) - 1);
- index |= mask;
- }
- //printf("DEC mask: 0x%x index: %d \n", mask, index);
-
- step = (Wo_max - Wo_min)/WO_LEVELS;
- Wo = prev_Wo + step*(index);
-
- /* bit errors can make us go out of range leading to all sorts of
- probs like seg faults */
-
- if (Wo > Wo_max) Wo = Wo_max;
- if (Wo < Wo_min) Wo = Wo_min;
-
- return Wo;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: speech_to_uq_lsps()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Analyse a windowed frame of time domain speech to determine LPCs
- which are the converted to LSPs for quantisation and transmission
- over the channel.
-
-\*---------------------------------------------------------------------------*/
-
-float speech_to_uq_lsps(float lsp[],
- float ak[],
- float Sn[],
- float w[],
- int order
-)
-{
- int i, roots;
- float Wn[M];
- float R[LPC_MAX+1];
- float e, E;
-
- e = 0.0;
- for(i=0; i<M; i++) {
- Wn[i] = Sn[i]*w[i];
- e += Wn[i]*Wn[i];
- }
-
- /* trap 0 energy case as LPC analysis will fail */
-
- if (e == 0.0) {
- for(i=0; i<order; i++)
- lsp[i] = (PI/order)*(float)i;
- return 0.0;
- }
-
- autocorrelate(Wn, R, M, order);
- levinson_durbin(R, ak, order);
-
- E = 0.0;
- for(i=0; i<=order; i++)
- E += ak[i]*R[i];
-
- /* 15 Hz BW expansion as I can't hear the difference and it may help
- help occasional fails in the LSP root finding. Important to do this
- after energy calculation to avoid -ve energy values.
- */
-
- for(i=0; i<=order; i++)
- ak[i] *= powf(0.994,(float)i);
-
- roots = lpc_to_lsp(ak, order, lsp, 5, LSP_DELTA1);
- if (roots != order) {
- /* if root finding fails use some benign LSP values instead */
- for(i=0; i<order; i++)
- lsp[i] = (PI/order)*(float)i;
- }
-
- return E;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_lsps_scalar()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Thirty-six bit sclar LSP quantiser. From a vector of unquantised
- (floating point) LSPs finds the quantised LSP indexes.
-
-\*---------------------------------------------------------------------------*/
-
-void encode_lsps_scalar(int indexes[], float lsp[], int order)
-{
- int i,k,m;
- float wt[1];
- float lsp_hz[LPC_MAX];
- const float * cb;
- float se = 0.0f;
-
- /* convert from radians to Hz so we can use human readable
- frequencies */
-
- for(i=0; i<order; i++)
- lsp_hz[i] = (4000.0/PI)*lsp[i];
-
- /* scalar quantisers */
-
- wt[0] = 1.0;
- for(i=0; i<order; i++) {
- k = lsp_cb[i].k;
- m = lsp_cb[i].m;
- cb = lsp_cb[i].cb;
- indexes[i] = quantise(cb, &lsp_hz[i], wt, k, m, &se);
- }
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_lsps_scalar()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- From a vector of quantised LSP indexes, returns the quantised
- (floating point) LSPs.
-
-\*---------------------------------------------------------------------------*/
-
-void decode_lsps_scalar(float lsp[], int indexes[], int order)
-{
- int i,k;
- float lsp_hz[LPC_MAX];
- const float * cb;
-
- for(i=0; i<order; i++) {
- k = lsp_cb[i].k;
- cb = lsp_cb[i].cb;
- lsp_hz[i] = cb[indexes[i]*k];
- }
-
- /* convert back to radians */
-
- for(i=0; i<order; i++)
- lsp[i] = (PI/4000.0)*lsp_hz[i];
-}
-
-
-#ifdef __EXPERIMENTAL__
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_lsps_diff_freq_vq()
- AUTHOR......: David Rowe
- DATE CREATED: 15 November 2011
-
- Twenty-five bit LSP quantiser. LSPs 1-4 are quantised with scalar
- LSP differences (in frequency, i.e difference from the previous
- LSP). LSPs 5-10 are quantised with a VQ trained generated using
- vqtrainjnd.c
-
-\*---------------------------------------------------------------------------*/
-
-void encode_lsps_diff_freq_vq(int indexes[], float lsp[], int order)
-{
- int i,k,m;
- float lsp_hz[LPC_MAX];
- float lsp__hz[LPC_MAX];
- float dlsp[LPC_MAX];
- float dlsp_[LPC_MAX];
- float wt[LPC_MAX];
- const float * cb;
- float se = 0.0f;
-
- for(i=0; i<LPC_ORD; i++) {
- wt[i] = 1.0;
- }
-
- /* convert from radians to Hz so we can use human readable
- frequencies */
-
- for(i=0; i<order; i++)
- lsp_hz[i] = (4000.0/PI)*lsp[i];
-
- /* scalar quantisers for LSP differences 1..4 */
-
- wt[0] = 1.0;
- for(i=0; i<4; i++) {
- if (i)
- dlsp[i] = lsp_hz[i] - lsp__hz[i-1];
- else
- dlsp[0] = lsp_hz[0];
-
- k = lsp_cbd[i].k;
- m = lsp_cbd[i].m;
- cb = lsp_cbd[i].cb;
- indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se);
- dlsp_[i] = cb[indexes[i]*k];
-
- if (i)
- lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
- else
- lsp__hz[0] = dlsp_[0];
- }
-
- /* VQ LSPs 5,6,7,8,9,10 */
-
- k = lsp_cbjnd[4].k;
- m = lsp_cbjnd[4].m;
- cb = lsp_cbjnd[4].cb;
- indexes[4] = quantise(cb, &lsp_hz[4], &wt[4], k, m, &se);
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_lsps_diff_freq_vq()
- AUTHOR......: David Rowe
- DATE CREATED: 15 Nov 2011
-
- From a vector of quantised LSP indexes, returns the quantised
- (floating point) LSPs.
-
-\*---------------------------------------------------------------------------*/
-
-void decode_lsps_diff_freq_vq(float lsp_[], int indexes[], int order)
-{
- int i,k,m;
- float dlsp_[LPC_MAX];
- float lsp__hz[LPC_MAX];
- const float * cb;
-
- /* scalar LSP differences */
-
- for(i=0; i<4; i++) {
- cb = lsp_cbd[i].cb;
- dlsp_[i] = cb[indexes[i]];
- if (i)
- lsp__hz[i] = lsp__hz[i-1] + dlsp_[i];
- else
- lsp__hz[0] = dlsp_[0];
- }
-
- /* VQ */
-
- k = lsp_cbjnd[4].k;
- m = lsp_cbjnd[4].m;
- cb = lsp_cbjnd[4].cb;
- for(i=4; i<order; i++)
- lsp__hz[i] = cb[indexes[4]*k+i-4];
-
- /* convert back to radians */
-
- for(i=0; i<order; i++)
- lsp_[i] = (PI/4000.0)*lsp__hz[i];
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_lsps_diff_time()
- AUTHOR......: David Rowe
- DATE CREATED: 12 Sep 2012
-
- Encode difference from preious frames's LSPs using
- 3,3,2,2,2,2,1,1,1,1 scalar quantisers (18 bits total).
-
-\*---------------------------------------------------------------------------*/
-
-void encode_lsps_diff_time(int indexes[],
- float lsps[],
- float lsps__prev[],
- int order)
-{
- int i,k,m;
- float lsps_dt[LPC_ORD];
- float wt[LPC_MAX];
- const float * cb;
- float se = 0.0f;
-
- /* Determine difference in time and convert from radians to Hz so
- we can use human readable frequencies */
-
- for(i=0; i<LPC_ORD; i++) {
- lsps_dt[i] = (4000/PI)*(lsps[i] - lsps__prev[i]);
- }
-
- /* scalar quantisers */
-
- wt[0] = 1.0;
- for(i=0; i<order; i++) {
- k = lsp_cbdt[i].k;
- m = lsp_cbdt[i].m;
- cb = lsp_cbdt[i].cb;
- indexes[i] = quantise(cb, &lsps_dt[i], wt, k, m, &se);
- }
-
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_lsps_diff_time()
- AUTHOR......: David Rowe
- DATE CREATED: 15 Nov 2011
-
- From a quantised LSP indexes, returns the quantised
- (floating point) LSPs.
-
-\*---------------------------------------------------------------------------*/
-
-void decode_lsps_diff_time(
- float lsps_[],
- int indexes[],
- float lsps__prev[],
- int order)
-{
- int i,k,m;
- const float * cb;
-
- for(i=0; i<order; i++)
- lsps_[i] = lsps__prev[i];
-
- for(i=0; i<order; i++) {
- k = lsp_cbdt[i].k;
- cb = lsp_cbdt[i].cb;
- lsps_[i] += (PI/4000.0)*cb[indexes[i]*k];
- }
-
-}
-#endif
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_lsps_vq()
- AUTHOR......: David Rowe
- DATE CREATED: 15 Feb 2012
-
- Multi-stage VQ LSP quantiser developed by Jean-Marc Valin.
-
-\*---------------------------------------------------------------------------*/
-
-void encode_lsps_vq(int *indexes, float *x, float *xq, int ndim)
-{
- int i, n1, n2, n3;
- float err[LPC_ORD], err2[LPC_ORD], err3[LPC_ORD];
- float w[LPC_ORD], w2[LPC_ORD], w3[LPC_ORD];
- const float *codebook1 = lsp_cbjvm[0].cb;
- const float *codebook2 = lsp_cbjvm[1].cb;
- const float *codebook3 = lsp_cbjvm[2].cb;
-
- assert(ndim <= LPC_ORD);
-
- w[0] = MIN(x[0], x[1]-x[0]);
- for (i=1;i<ndim-1;i++)
- w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
- w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], PI-x[ndim-1]);
-
- compute_weights(x, w, ndim);
-
- n1 = find_nearest(codebook1, lsp_cbjvm[0].m, x, ndim);
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = codebook1[ndim*n1+i];
- err[i] = x[i] - xq[i];
- }
- for (i=0;i<ndim/2;i++)
- {
- err2[i] = err[2*i];
- err3[i] = err[2*i+1];
- w2[i] = w[2*i];
- w3[i] = w[2*i+1];
- }
- n2 = find_nearest_weighted(codebook2, lsp_cbjvm[1].m, err2, w2, ndim/2);
- n3 = find_nearest_weighted(codebook3, lsp_cbjvm[2].m, err3, w3, ndim/2);
-
- indexes[0] = n1;
- indexes[1] = n2;
- indexes[2] = n3;
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_lsps_vq()
- AUTHOR......: David Rowe
- DATE CREATED: 15 Feb 2012
-
-\*---------------------------------------------------------------------------*/
-
-void decode_lsps_vq(int *indexes, float *xq, int ndim)
-{
- int i, n1, n2, n3;
- const float *codebook1 = lsp_cbjvm[0].cb;
- const float *codebook2 = lsp_cbjvm[1].cb;
- const float *codebook3 = lsp_cbjvm[2].cb;
-
- n1 = indexes[0];
- n2 = indexes[1];
- n3 = indexes[2];
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = codebook1[ndim*n1+i];
- }
- for (i=0;i<ndim/2;i++)
- {
- xq[2*i] += codebook2[ndim*n2/2+i];
- xq[2*i+1] += codebook3[ndim*n3/2+i];
- }
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: bw_expand_lsps()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Applies Bandwidth Expansion (BW) to a vector of LSPs. Prevents any
- two LSPs getting too close together after quantisation. We know
- from experiment that LSP quantisation errors < 12.5Hz (25Hz step
- size) are inaudible so we use that as the minimum LSP separation.
-
-\*---------------------------------------------------------------------------*/
-
-void bw_expand_lsps(float lsp[], int order, float min_sep_low, float min_sep_high)
-{
- int i;
-
- for(i=1; i<4; i++) {
-
- if ((lsp[i] - lsp[i-1]) < min_sep_low*(PI/4000.0))
- lsp[i] = lsp[i-1] + min_sep_low*(PI/4000.0);
-
- }
-
- /* As quantiser gaps increased, larger BW expansion was required
- to prevent twinkly noises. This may need more experiment for
- different quanstisers.
- */
-
- for(i=4; i<order; i++) {
- if (lsp[i] - lsp[i-1] < min_sep_high*(PI/4000.0))
- lsp[i] = lsp[i-1] + min_sep_high*(PI/4000.0);
- }
-}
-
-void bw_expand_lsps2(float lsp[],
- int order
-)
-{
- int i;
-
- for(i=1; i<4; i++) {
-
- if ((lsp[i] - lsp[i-1]) < 100.0*(PI/4000.0))
- lsp[i] = lsp[i-1] + 100.0*(PI/4000.0);
-
- }
-
- /* As quantiser gaps increased, larger BW expansion was required
- to prevent twinkly noises. This may need more experiment for
- different quanstisers.
- */
-
- for(i=4; i<order; i++) {
- if (lsp[i] - lsp[i-1] < 200.0*(PI/4000.0))
- lsp[i] = lsp[i-1] + 200.0*(PI/4000.0);
- }
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: locate_lsps_jnd_steps()
- AUTHOR......: David Rowe
- DATE CREATED: 27/10/2011
-
- Applies a form of Bandwidth Expansion (BW) to a vector of LSPs.
- Listening tests have determined that "quantising" the position of
- each LSP to the non-linear steps below introduces a "just noticable
- difference" in the synthesised speech.
-
- This operation can be used before quantisation to limit the input
- data to the quantiser to a number of discrete steps.
-
- This operation can also be used during quantisation as a form of
- hysteresis in the calculation of quantiser error. For example if
- the quantiser target of lsp1 is 500 Hz, candidate vectors with lsp1
- of 515 and 495 Hz sound effectively the same.
-
-\*---------------------------------------------------------------------------*/
-
-void locate_lsps_jnd_steps(float lsps[], int order)
-{
- int i;
- float lsp_hz, step;
-
- assert(order == 10);
-
- /* quantise to 25Hz steps */
-
- step = 25;
- for(i=0; i<2; i++) {
- lsp_hz = lsps[i]*4000.0/PI;
- lsp_hz = floorf(lsp_hz/step + 0.5)*step;
- lsps[i] = lsp_hz*PI/4000.0;
- if (i) {
- if (lsps[i] == lsps[i-1])
- lsps[i] += step*PI/4000.0;
-
- }
- }
-
- /* quantise to 50Hz steps */
-
- step = 50;
- for(i=2; i<4; i++) {
- lsp_hz = lsps[i]*4000.0/PI;
- lsp_hz = floorf(lsp_hz/step + 0.5)*step;
- lsps[i] = lsp_hz*PI/4000.0;
- if (i) {
- if (lsps[i] == lsps[i-1])
- lsps[i] += step*PI/4000.0;
-
- }
- }
-
- /* quantise to 100Hz steps */
-
- step = 100;
- for(i=4; i<10; i++) {
- lsp_hz = lsps[i]*4000.0/PI;
- lsp_hz = floorf(lsp_hz/step + 0.5)*step;
- lsps[i] = lsp_hz*PI/4000.0;
- if (i) {
- if (lsps[i] == lsps[i-1])
- lsps[i] += step*PI/4000.0;
-
- }
- }
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: apply_lpc_correction()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Apply first harmonic LPC correction at decoder. This helps improve
- low pitch males after LPC modelling, like hts1a and morig.
-
-\*---------------------------------------------------------------------------*/
-
-void apply_lpc_correction(MODEL *model)
-{
- if (model->Wo < (PI*150.0/4000)) {
- model->A[1] *= 0.032;
- }
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_energy()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Encodes LPC energy using an E_LEVELS quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-int encode_energy(float e)
-{
- int index;
- float e_min = E_MIN_DB;
- float e_max = E_MAX_DB;
- float norm;
-
- e = 10.0*log10f(e);
- norm = (e - e_min)/(e_max - e_min);
- index = floorf(E_LEVELS * norm + 0.5);
- if (index < 0 ) index = 0;
- if (index > (E_LEVELS-1)) index = E_LEVELS-1;
-
- return index;
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_energy()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Decodes energy using a E_LEVELS quantiser.
-
-\*---------------------------------------------------------------------------*/
-
-float decode_energy(int index)
-{
- float e_min = E_MIN_DB;
- float e_max = E_MAX_DB;
- float step;
- float e;
-
- step = (e_max - e_min)/E_LEVELS;
- e = e_min + step*(index);
- e = powf(10.0,e/10.0);
-
- return e;
-}
-
-#ifdef NOT_USED
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_amplitudes()
- AUTHOR......: David Rowe
- DATE CREATED: 22/8/2010
-
- Given the amplitude quantiser indexes recovers the harmonic
- amplitudes.
-
-\*---------------------------------------------------------------------------*/
-
-float decode_amplitudes(kiss_fft_cfg fft_fwd_cfg,
- MODEL *model,
- float ak[],
- int lsp_indexes[],
- int energy_index,
- float lsps[],
- float *e
-)
-{
- float snr;
-
- decode_lsps_scalar(lsps, lsp_indexes, LPC_ORD);
- bw_expand_lsps(lsps, LPC_ORD);
- lsp_to_lpc(lsps, ak, LPC_ORD);
- *e = decode_energy(energy_index);
- aks_to_M2(ak, LPC_ORD, model, *e, &snr, 1, 0, 0, 1);
- apply_lpc_correction(model);
-
- return snr;
-}
-#endif
-
-static float ge_coeff[2] = {0.8, 0.9};
-
-void compute_weights2(const float *x, const float *xp, float *w, int ndim)
-{
- w[0] = 30;
- w[1] = 1;
- if (x[1]<0)
- {
- w[0] *= .6;
- w[1] *= .3;
- }
- if (x[1]<-10)
- {
- w[0] *= .3;
- w[1] *= .3;
- }
- /* Higher weight if pitch is stable */
- if (fabsf(x[0]-xp[0])<.2)
- {
- w[0] *= 2;
- w[1] *= 1.5;
- } else if (fabsf(x[0]-xp[0])>.5) /* Lower if not stable */
- {
- w[0] *= .5;
- }
-
- /* Lower weight for low energy */
- if (x[1] < xp[1]-10)
- {
- w[1] *= .5;
- }
- if (x[1] < xp[1]-20)
- {
- w[1] *= .5;
- }
-
- //w[0] = 30;
- //w[1] = 1;
-
- /* Square the weights because it's applied on the squared error */
- w[0] *= w[0];
- w[1] *= w[1];
-
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: quantise_WoE()
- AUTHOR......: Jean-Marc Valin & David Rowe
- DATE CREATED: 29 Feb 2012
-
- Experimental joint Wo and LPC energy vector quantiser developed by
- Jean-Marc Valin. Exploits correlations between the difference in
- the log pitch and log energy from frame to frame. For example
- both the pitch and energy tend to only change by small amounts
- during voiced speech, however it is important that these changes be
- coded carefully. During unvoiced speech they both change a lot but
- the ear is less sensitve to errors so coarser quantisation is OK.
-
- The ear is sensitive to log energy and loq pitch so we quantise in
- these domains. That way the error measure used to quantise the
- values is close to way the ear senses errors.
-
- See http://jmspeex.livejournal.com/10446.html
-
-\*---------------------------------------------------------------------------*/
-
-void quantise_WoE(MODEL *model, float *e, float xq[])
-{
- int i, n1;
- float x[2];
- float err[2];
- float w[2];
- const float *codebook1 = ge_cb[0].cb;
- int nb_entries = ge_cb[0].m;
- int ndim = ge_cb[0].k;
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
-
- x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2);
- x[1] = 10.0*log10f(1e-4 + *e);
-
- compute_weights2(x, xq, w, ndim);
- for (i=0;i<ndim;i++)
- err[i] = x[i]-ge_coeff[i]*xq[i];
- n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
- err[i] -= codebook1[ndim*n1+i];
- }
-
- /*
- x = log2(4000*Wo/(PI*50));
- 2^x = 4000*Wo/(PI*50)
- Wo = (2^x)*(PI*50)/4000;
- */
-
- model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0;
-
- /* bit errors can make us go out of range leading to all sorts of
- probs like seg faults */
-
- if (model->Wo > Wo_max) model->Wo = Wo_max;
- if (model->Wo < Wo_min) model->Wo = Wo_min;
-
- model->L = PI/model->Wo; /* if we quantise Wo re-compute L */
-
- *e = powf(10.0, xq[1]/10.0);
-}
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: encode_WoE()
- AUTHOR......: Jean-Marc Valin & David Rowe
- DATE CREATED: 11 May 2012
-
- Joint Wo and LPC energy vector quantiser developed my Jean-Marc
- Valin. Returns index, and updated states xq[].
-
-\*---------------------------------------------------------------------------*/
-
-int encode_WoE(MODEL *model, float e, float xq[])
-{
- int i, n1;
- float x[2];
- float err[2];
- float w[2];
- const float *codebook1 = ge_cb[0].cb;
- int nb_entries = ge_cb[0].m;
- int ndim = ge_cb[0].k;
-
- assert((1<<WO_E_BITS) == nb_entries);
-
- if (e < 0.0) e = 0; /* occasional small negative energies due LPC round off I guess */
-
- x[0] = log10f((model->Wo/PI)*4000.0/50.0)/log10f(2);
- x[1] = 10.0*log10f(1e-4 + e);
-
- compute_weights2(x, xq, w, ndim);
- for (i=0;i<ndim;i++)
- err[i] = x[i]-ge_coeff[i]*xq[i];
- n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
- err[i] -= codebook1[ndim*n1+i];
- }
-
- //printf("enc: %f %f (%f)(%f) \n", xq[0], xq[1], e, 10.0*log10(1e-4 + e));
- return n1;
-}
-
-
-/*---------------------------------------------------------------------------*\
-
- FUNCTION....: decode_WoE()
- AUTHOR......: Jean-Marc Valin & David Rowe
- DATE CREATED: 11 May 2012
-
- Joint Wo and LPC energy vector quantiser developed my Jean-Marc
- Valin. Given index and states xq[], returns Wo & E, and updates
- states xq[].
-
-\*---------------------------------------------------------------------------*/
-
-void decode_WoE(MODEL *model, float *e, float xq[], int n1)
-{
- int i;
- const float *codebook1 = ge_cb[0].cb;
- int ndim = ge_cb[0].k;
- float Wo_min = TWO_PI/P_MAX;
- float Wo_max = TWO_PI/P_MIN;
-
- for (i=0;i<ndim;i++)
- {
- xq[i] = ge_coeff[i]*xq[i] + codebook1[ndim*n1+i];
- }
-
- //printf("dec: %f %f\n", xq[0], xq[1]);
- model->Wo = powf(2.0, xq[0])*(PI*50.0)/4000.0;
-
- /* bit errors can make us go out of range leading to all sorts of
- probs like seg faults */
-
- if (model->Wo > Wo_max) model->Wo = Wo_max;
- if (model->Wo < Wo_min) model->Wo = Wo_min;
-
- model->L = PI/model->Wo; /* if we quantise Wo re-compute L */
-
- *e = powf(10.0, xq[1]/10.0);
-}
-