diff options
Diffstat (limited to 'gr-trellis/src/lib/fsm.cc')
-rw-r--r-- | gr-trellis/src/lib/fsm.cc | 548 |
1 files changed, 0 insertions, 548 deletions
diff --git a/gr-trellis/src/lib/fsm.cc b/gr-trellis/src/lib/fsm.cc deleted file mode 100644 index fb2b4d2c9f..0000000000 --- a/gr-trellis/src/lib/fsm.cc +++ /dev/null @@ -1,548 +0,0 @@ -/* -*- c++ -*- */ -/* - * Copyright 2002 Free Software Foundation, Inc. - * - * This file is part of GNU Radio - * - * GNU Radio is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 3, or (at your option) - * any later version. - * - * GNU Radio is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with GNU Radio; see the file COPYING. If not, write to - * the Free Software Foundation, Inc., 51 Franklin Street, - * Boston, MA 02110-1301, USA. - */ - -#include <cstdio> -#include <string> -#include <iostream> -#include <fstream> -#include <stdexcept> -#include <cmath> -#include <stdlib.h> -#include "base.h" -#include "fsm.h" - - -fsm::fsm() -{ - d_I=0; - d_S=0; - d_O=0; - d_NS.resize(0); - d_OS.resize(0); - d_PS.resize(0); - d_PI.resize(0); - d_TMi.resize(0); - d_TMl.resize(0); -} - -fsm::fsm(const fsm &FSM) -{ - d_I=FSM.I(); - d_S=FSM.S(); - d_O=FSM.O(); - d_NS=FSM.NS(); - d_OS=FSM.OS(); - d_PS=FSM.PS(); // is this going to make a deep copy? - d_PI=FSM.PI(); - d_TMi=FSM.TMi(); - d_TMl=FSM.TMl(); -} - -fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS) -{ - d_I=I; - d_S=S; - d_O=O; - d_NS=NS; - d_OS=OS; - - generate_PS_PI(); - generate_TM(); -} - -//###################################################################### -//# Read an FSM specification from a file. -//# Format (hopefully will become more flexible in the future...): -//# I S O (in the first line) -//# blank line -//# Next state matrix (S lines, each with I integers separated by spaces) -//# blank line -//# output symbol matrix (S lines, each with I integers separated by spaces) -//# optional comments -//###################################################################### -fsm::fsm(const char *name) -{ - FILE *fsmfile; - - if((fsmfile=fopen(name,"r"))==NULL) - throw std::runtime_error ("fsm::fsm(const char *name): file open error\n"); - //printf("file open error in fsm()\n"); - - if(fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O) == EOF) { - if(ferror(fsmfile) != 0) - throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); - } - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - - for(int i=0;i<d_S;i++) { - for(int j=0;j<d_I;j++) { - if(fscanf(fsmfile,"%d",&(d_NS[i*d_I+j])) == EOF) { - if(ferror(fsmfile) != 0) - throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); - } - } - } - for(int i=0;i<d_S;i++) { - for(int j=0;j<d_I;j++) { - if(fscanf(fsmfile,"%d",&(d_OS[i*d_I+j])) == EOF) { - if(ferror(fsmfile) != 0) - throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); - } - } - } - - fclose(fsmfile); - - generate_PS_PI(); - generate_TM(); -} - - - -//###################################################################### -//# Automatically generate the FSM from the generator matrix -//# of a (n,k) binary convolutional code -//###################################################################### -fsm::fsm(int k, int n, const std::vector<int> &G) -{ - - // calculate maximum memory requirements for each input stream - std::vector<int> max_mem_x(k,-1); - int max_mem = -1; - for(int i=0;i<k;i++) { - for(int j=0;j<n;j++) { - int mem = -1; - if(G[i*n+j]!=0) - mem=(int)(log(double(G[i*n+j]))/log(2.0)); - if(mem>max_mem_x[i]) - max_mem_x[i]=mem; - if(mem>max_mem) - max_mem=mem; - } - } - -//printf("max_mem_x\n"); -//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n"); - - // calculate total memory requirements to set S - int sum_max_mem = 0; - for(int i=0;i<k;i++) - sum_max_mem += max_mem_x[i]; - -//printf("sum_max_mem = %d\n",sum_max_mem); - - d_I=1<<k; - d_S=1<<sum_max_mem; - d_O=1<<n; - - // binary representation of the G matrix - std::vector<std::vector<int> > Gb(k*n); - for(int j=0;j<k*n;j++) { - Gb[j].resize(max_mem+1); - dec2base(G[j],2,Gb[j]); -//printf("Gb\n"); -//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n"); - } - - // alphabet size of each shift register - std::vector<int> bases_x(k); - for(int j=0;j<k ;j++) - bases_x[j] = 1 << max_mem_x[j]; -//printf("bases_x\n"); -//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n"); - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - - std::vector<int> sx(k); - std::vector<int> nsx(k); - std::vector<int> tx(k); - std::vector<std::vector<int> > tb(k); - for(int j=0;j<k;j++) - tb[j].resize(max_mem+1); - std::vector<int> inb(k); - std::vector<int> outb(n); - - - for(int s=0;s<d_S;s++) { - dec2bases(s,bases_x,sx); // split s into k values, each representing one of the k shift registers -//printf("state = %d \nstates = ",s); -//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n"); - for(int i=0;i<d_I;i++) { - dec2base(i,2,inb); // input in binary -//printf("input = %d \ninputs = ",i); -//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n"); - - // evaluate next state - for(int j=0;j<k;j++) - nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first - d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state - - // evaluate transitions - for(int j=0;j<k;j++) - tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first - for(int j=0;j<k;j++) { - dec2base(tx[j],2,tb[j]); // transition in binary -//printf("transition = %d \ntransitions = ",tx[j]); -//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n"); - } - - // evaluate outputs - for(int nn=0;nn<n;nn++) { - outb[nn] = 0; - for(int j=0;j<k;j++) { - for(int m=0;m<max_mem+1;m++) - outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011 -//printf("output %d equals %d\n",nn,outb[nn]); - } - } - d_OS[s*d_I+i] = base2dec(outb,2); - } - } - - generate_PS_PI(); - generate_TM(); -} - - - - -//###################################################################### -//# Automatically generate an FSM specification describing the -//# ISI for a channel -//# of length ch_length and a modulation of size mod_size -//###################################################################### -fsm::fsm(int mod_size, int ch_length) -{ - d_I=mod_size; - d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5); - d_O=d_S*d_I; - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - - for(int s=0;s<d_S;s++) { - for(int i=0;i<d_I;i++) { - int t=i*d_S+s; - d_NS[s*d_I+i] = t/d_I; - d_OS[s*d_I+i] = t; - } - } - - generate_PS_PI(); - generate_TM(); -} - - - - -//###################################################################### -//# Automatically generate an FSM specification describing the -//# the trellis for a CPM with h=K/P (relatively prime), -//# alphabet size M, and frequency pulse duration L symbols -//# -//# This FSM is based on the paper by B. Rimoldi -//# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988 -//# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf -//###################################################################### -fsm::fsm(int P, int M, int L) -{ - d_I=M; - d_S=(int)(pow(1.0*M,1.0*L-1)+0.5)*P; - d_O=(int)(pow(1.0*M,1.0*L)+0.5)*P; - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - int nv; - for(int s=0;s<d_S;s++) { - for(int i=0;i<d_I;i++) { - int s1=s/P; - int v=s%P; - int ns1= (i*(int)(pow(1.0*M,1.0*(L-1))+0.5)+s1)/M; - if (L==1) - nv=(i+v)%P; - else - nv=(s1%M+v)%P; - d_NS[s*d_I+i] = ns1*P+nv; - d_OS[s*d_I+i] = i*d_S+s; - } - } - - generate_PS_PI(); - generate_TM(); -} - - - - - - - - - - -//###################################################################### -//# Automatically generate an FSM specification describing the -//# the joint trellis of fsm1 and fsm2 -//###################################################################### -fsm::fsm(const fsm &FSM1, const fsm &FSM2) -{ - d_I=FSM1.I()*FSM2.I(); - d_S=FSM1.S()*FSM2.S(); - d_O=FSM1.O()*FSM2.O(); - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - - for(int s=0;s<d_S;s++) { - for(int i=0;i<d_I;i++) { - int s1=s/FSM2.S(); - int s2=s%FSM2.S(); - int i1=i/FSM2.I(); - int i2=i%FSM2.I(); - d_NS[s*d_I+i] = FSM1.NS()[s1 * FSM1.I() + i1] * FSM2.S() + FSM2.NS()[s2 * FSM2.I() + i2]; - d_OS[s*d_I+i] = FSM1.OS()[s1 * FSM1.I() + i1] * FSM2.O() + FSM2.OS()[s2 * FSM2.I() + i2]; - } - } - - generate_PS_PI(); - generate_TM(); -} - - - - -//###################################################################### -//# Generate a new FSM representing n stages through the original FSM -//# AKA radix-n FSM -//###################################################################### -fsm::fsm(const fsm &FSM, int n) -{ - d_I=(int) (pow(1.0*FSM.I(),1.0*n)+0.5); - d_S=FSM.S(); - d_O=(int) (pow(1.0*FSM.O(),1.0*n)+0.5); - - d_NS.resize(d_I*d_S); - d_OS.resize(d_I*d_S); - - for(int s=0;s<d_S;s++ ) { - for(int i=0;i<d_I;i++ ) { - std::vector<int> ii(n); - dec2base(i,FSM.I(),ii); - std::vector<int> oo(n); - int ns=s; - for(int k=0;k<n;k++) { - oo[k]=FSM.OS()[ns*FSM.I()+ii[k]]; - ns=FSM.NS()[ns*FSM.I()+ii[k]]; - } - d_NS[s*d_I+i]=ns; - d_OS[s*d_I+i]=base2dec(oo,FSM.O()); - } - } - - generate_PS_PI(); - generate_TM(); -} - - - - - - - - - -//###################################################################### -//# generate the PS and PI tables for later use -//###################################################################### -void fsm::generate_PS_PI() -{ - d_PS.resize(d_S); - d_PI.resize(d_S); - - for(int i=0;i<d_S;i++) { - d_PS[i].resize(d_I*d_S); // max possible size - d_PI[i].resize(d_I*d_S); - int j=0; - for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) { - if(d_NS[ii*d_I+jj]!=i) continue; - d_PS[i][j]=ii; - d_PI[i][j]=jj; - j++; - } - d_PS[i].resize(j); - d_PI[i].resize(j); - } -} - - -//###################################################################### -//# generate the termination matrices TMl and TMi for later use -//###################################################################### -void fsm::generate_TM() -{ - d_TMi.resize(d_S*d_S); - d_TMl.resize(d_S*d_S); - - for(int i=0;i<d_S*d_S;i++) { - d_TMi[i] = -1; // no meaning - d_TMl[i] = d_S; //infinity: you need at most S-1 steps - if (i/d_S == i%d_S) - d_TMl[i] = 0; - } - - for(int s=0;s<d_S;s++) { - bool done = false; - int attempts = 0; - while (done == false && attempts < d_S-1) { - done = find_es(s); - attempts ++; - } - if (done == false && d_S > 1) { - //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n"); - printf("fsm::generate_TM(): FSM appears to be disconnected\n"); - printf("state %d cannot be reached from all other states\n",s); - } - } -} - - -// find a path from any state to the ending state "es" -bool fsm::find_es(int es) -{ - bool done = true; - for(int s=0;s<d_S;s++) { - if(d_TMl[s*d_S+es] < d_S) - continue; - int minl=d_S; - int mini=-1; - for(int i=0;i<d_I;i++) { - if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) { - minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es]; - mini = i; - } - } - if (mini != -1) { - d_TMl[s*d_S+es]=minl; - d_TMi[s*d_S+es]=mini; - } - else - done = false; - } - return done; -} - - - - - -//###################################################################### -//# generate trellis representation of FSM as an SVG file -//###################################################################### -void fsm::write_trellis_svg( std::string filename ,int number_stages) -{ - std::ofstream trellis_fname (filename.c_str()); - if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);} - const int TRELLIS_Y_OFFSET = 30; - const int TRELLIS_X_OFFSET = 20; - const int STAGE_LABEL_Y_OFFSET = 25; - const int STAGE_LABEL_X_OFFSET = 20; - const int STATE_LABEL_Y_OFFSET = 30; - const int STATE_LABEL_X_OFFSET = 5; - const int STAGE_STATE_OFFSETS = 10; -// std::cout << "################## BEGIN SVG TRELLIS PIC #####################" << std::endl; - trellis_fname << "<svg viewBox = \"0 0 200 200\" version = \"1.1\">" << std::endl; - - for( int stage_num = 0;stage_num < number_stages;stage_num ++){ - // draw states - for ( int state_num = 0;state_num < d_S ; state_num ++ ) { - trellis_fname << "<circle cx = \"" << stage_num * STAGE_STATE_OFFSETS + TRELLIS_X_OFFSET << - "\" cy = \"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" r = \"1\"/>" << std::endl; - //draw branches - if(stage_num != number_stages-1){ - for( int branch_num = 0;branch_num < d_I; branch_num++){ - trellis_fname << "<line x1 =\"" << STAGE_STATE_OFFSETS * stage_num+ TRELLIS_X_OFFSET << "\" "; - trellis_fname << "y1 =\"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET<< "\" "; - trellis_fname << "x2 =\"" << STAGE_STATE_OFFSETS *stage_num + STAGE_STATE_OFFSETS+ TRELLIS_X_OFFSET << "\" "; - trellis_fname << "y2 =\"" << d_NS[d_I * state_num + branch_num] * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" "; - trellis_fname << " stroke-dasharray = \"3," << branch_num << "\" "; - trellis_fname << " stroke = \"black\" stroke-width = \"0.3\"/>" << std::endl; - } - } - } - } - // label the stages - trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl; - for( int stage_num = 0;stage_num < number_stages ;stage_num ++){ - trellis_fname << "<text x = \"" << stage_num * STAGE_STATE_OFFSETS + STAGE_LABEL_X_OFFSET << - "\" y = \"" << STAGE_LABEL_Y_OFFSET << "\" >" << std::endl; - trellis_fname << stage_num << std::endl; - trellis_fname << "</text>" << std::endl; - } - trellis_fname << "</g>" << std::endl; - - // label the states - trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl; - for( int state_num = 0;state_num < d_S ; state_num ++){ - trellis_fname << "<text y = \"" << state_num * STAGE_STATE_OFFSETS + STATE_LABEL_Y_OFFSET << - "\" x = \"" << STATE_LABEL_X_OFFSET << "\" >" << std::endl; - trellis_fname << state_num << std::endl; - trellis_fname << "</text>" << std::endl; - } - trellis_fname << "</g>" << std::endl; - - - trellis_fname << "</svg>" << std::endl; -// std::cout << "################## END SVG TRELLIS PIC ##################### " << std::endl; - trellis_fname.close(); -} - - - - - - -//###################################################################### -//# Write trellis specification to a text file, -//# in the same format used when reading FSM files -//###################################################################### -void fsm::write_fsm_txt(std::string filename) -{ - std::ofstream trellis_fname (filename.c_str()); - if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);} - trellis_fname << d_I << ' ' << d_S << ' ' << d_O << std::endl; - trellis_fname << std::endl; - for(int i=0;i<d_S;i++) { - for(int j=0;j<d_I;j++) trellis_fname << d_NS[i*d_I+j] << ' '; - trellis_fname << std::endl; - } - trellis_fname << std::endl; - for(int i=0;i<d_S;i++) { - for(int j=0;j<d_I;j++) trellis_fname << d_OS[i*d_I+j] << ' '; - trellis_fname << std::endl; - } - trellis_fname << std::endl; - trellis_fname.close(); -} - |