summaryrefslogtreecommitdiff
path: root/gr-trellis/src/lib/fsm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gr-trellis/src/lib/fsm.cc')
-rw-r--r--gr-trellis/src/lib/fsm.cc548
1 files changed, 0 insertions, 548 deletions
diff --git a/gr-trellis/src/lib/fsm.cc b/gr-trellis/src/lib/fsm.cc
deleted file mode 100644
index fb2b4d2c9f..0000000000
--- a/gr-trellis/src/lib/fsm.cc
+++ /dev/null
@@ -1,548 +0,0 @@
-/* -*- c++ -*- */
-/*
- * Copyright 2002 Free Software Foundation, Inc.
- *
- * This file is part of GNU Radio
- *
- * GNU Radio is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3, or (at your option)
- * any later version.
- *
- * GNU Radio is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 51 Franklin Street,
- * Boston, MA 02110-1301, USA.
- */
-
-#include <cstdio>
-#include <string>
-#include <iostream>
-#include <fstream>
-#include <stdexcept>
-#include <cmath>
-#include <stdlib.h>
-#include "base.h"
-#include "fsm.h"
-
-
-fsm::fsm()
-{
- d_I=0;
- d_S=0;
- d_O=0;
- d_NS.resize(0);
- d_OS.resize(0);
- d_PS.resize(0);
- d_PI.resize(0);
- d_TMi.resize(0);
- d_TMl.resize(0);
-}
-
-fsm::fsm(const fsm &FSM)
-{
- d_I=FSM.I();
- d_S=FSM.S();
- d_O=FSM.O();
- d_NS=FSM.NS();
- d_OS=FSM.OS();
- d_PS=FSM.PS(); // is this going to make a deep copy?
- d_PI=FSM.PI();
- d_TMi=FSM.TMi();
- d_TMl=FSM.TMl();
-}
-
-fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS)
-{
- d_I=I;
- d_S=S;
- d_O=O;
- d_NS=NS;
- d_OS=OS;
-
- generate_PS_PI();
- generate_TM();
-}
-
-//######################################################################
-//# Read an FSM specification from a file.
-//# Format (hopefully will become more flexible in the future...):
-//# I S O (in the first line)
-//# blank line
-//# Next state matrix (S lines, each with I integers separated by spaces)
-//# blank line
-//# output symbol matrix (S lines, each with I integers separated by spaces)
-//# optional comments
-//######################################################################
-fsm::fsm(const char *name)
-{
- FILE *fsmfile;
-
- if((fsmfile=fopen(name,"r"))==NULL)
- throw std::runtime_error ("fsm::fsm(const char *name): file open error\n");
- //printf("file open error in fsm()\n");
-
- if(fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O) == EOF) {
- if(ferror(fsmfile) != 0)
- throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
- }
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) {
- if(fscanf(fsmfile,"%d",&(d_NS[i*d_I+j])) == EOF) {
- if(ferror(fsmfile) != 0)
- throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
- }
- }
- }
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) {
- if(fscanf(fsmfile,"%d",&(d_OS[i*d_I+j])) == EOF) {
- if(ferror(fsmfile) != 0)
- throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
- }
- }
- }
-
- fclose(fsmfile);
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-//######################################################################
-//# Automatically generate the FSM from the generator matrix
-//# of a (n,k) binary convolutional code
-//######################################################################
-fsm::fsm(int k, int n, const std::vector<int> &G)
-{
-
- // calculate maximum memory requirements for each input stream
- std::vector<int> max_mem_x(k,-1);
- int max_mem = -1;
- for(int i=0;i<k;i++) {
- for(int j=0;j<n;j++) {
- int mem = -1;
- if(G[i*n+j]!=0)
- mem=(int)(log(double(G[i*n+j]))/log(2.0));
- if(mem>max_mem_x[i])
- max_mem_x[i]=mem;
- if(mem>max_mem)
- max_mem=mem;
- }
- }
-
-//printf("max_mem_x\n");
-//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
-
- // calculate total memory requirements to set S
- int sum_max_mem = 0;
- for(int i=0;i<k;i++)
- sum_max_mem += max_mem_x[i];
-
-//printf("sum_max_mem = %d\n",sum_max_mem);
-
- d_I=1<<k;
- d_S=1<<sum_max_mem;
- d_O=1<<n;
-
- // binary representation of the G matrix
- std::vector<std::vector<int> > Gb(k*n);
- for(int j=0;j<k*n;j++) {
- Gb[j].resize(max_mem+1);
- dec2base(G[j],2,Gb[j]);
-//printf("Gb\n");
-//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n");
- }
-
- // alphabet size of each shift register
- std::vector<int> bases_x(k);
- for(int j=0;j<k ;j++)
- bases_x[j] = 1 << max_mem_x[j];
-//printf("bases_x\n");
-//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- std::vector<int> sx(k);
- std::vector<int> nsx(k);
- std::vector<int> tx(k);
- std::vector<std::vector<int> > tb(k);
- for(int j=0;j<k;j++)
- tb[j].resize(max_mem+1);
- std::vector<int> inb(k);
- std::vector<int> outb(n);
-
-
- for(int s=0;s<d_S;s++) {
- dec2bases(s,bases_x,sx); // split s into k values, each representing one of the k shift registers
-//printf("state = %d \nstates = ",s);
-//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n");
- for(int i=0;i<d_I;i++) {
- dec2base(i,2,inb); // input in binary
-//printf("input = %d \ninputs = ",i);
-//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n");
-
- // evaluate next state
- for(int j=0;j<k;j++)
- nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first
- d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state
-
- // evaluate transitions
- for(int j=0;j<k;j++)
- tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first
- for(int j=0;j<k;j++) {
- dec2base(tx[j],2,tb[j]); // transition in binary
-//printf("transition = %d \ntransitions = ",tx[j]);
-//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n");
- }
-
- // evaluate outputs
- for(int nn=0;nn<n;nn++) {
- outb[nn] = 0;
- for(int j=0;j<k;j++) {
- for(int m=0;m<max_mem+1;m++)
- outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011
-//printf("output %d equals %d\n",nn,outb[nn]);
- }
- }
- d_OS[s*d_I+i] = base2dec(outb,2);
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-//######################################################################
-//# Automatically generate an FSM specification describing the
-//# ISI for a channel
-//# of length ch_length and a modulation of size mod_size
-//######################################################################
-fsm::fsm(int mod_size, int ch_length)
-{
- d_I=mod_size;
- d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5);
- d_O=d_S*d_I;
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int s=0;s<d_S;s++) {
- for(int i=0;i<d_I;i++) {
- int t=i*d_S+s;
- d_NS[s*d_I+i] = t/d_I;
- d_OS[s*d_I+i] = t;
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-//######################################################################
-//# Automatically generate an FSM specification describing the
-//# the trellis for a CPM with h=K/P (relatively prime),
-//# alphabet size M, and frequency pulse duration L symbols
-//#
-//# This FSM is based on the paper by B. Rimoldi
-//# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988
-//# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf
-//######################################################################
-fsm::fsm(int P, int M, int L)
-{
- d_I=M;
- d_S=(int)(pow(1.0*M,1.0*L-1)+0.5)*P;
- d_O=(int)(pow(1.0*M,1.0*L)+0.5)*P;
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
- int nv;
- for(int s=0;s<d_S;s++) {
- for(int i=0;i<d_I;i++) {
- int s1=s/P;
- int v=s%P;
- int ns1= (i*(int)(pow(1.0*M,1.0*(L-1))+0.5)+s1)/M;
- if (L==1)
- nv=(i+v)%P;
- else
- nv=(s1%M+v)%P;
- d_NS[s*d_I+i] = ns1*P+nv;
- d_OS[s*d_I+i] = i*d_S+s;
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-
-
-
-
-
-
-//######################################################################
-//# Automatically generate an FSM specification describing the
-//# the joint trellis of fsm1 and fsm2
-//######################################################################
-fsm::fsm(const fsm &FSM1, const fsm &FSM2)
-{
- d_I=FSM1.I()*FSM2.I();
- d_S=FSM1.S()*FSM2.S();
- d_O=FSM1.O()*FSM2.O();
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int s=0;s<d_S;s++) {
- for(int i=0;i<d_I;i++) {
- int s1=s/FSM2.S();
- int s2=s%FSM2.S();
- int i1=i/FSM2.I();
- int i2=i%FSM2.I();
- d_NS[s*d_I+i] = FSM1.NS()[s1 * FSM1.I() + i1] * FSM2.S() + FSM2.NS()[s2 * FSM2.I() + i2];
- d_OS[s*d_I+i] = FSM1.OS()[s1 * FSM1.I() + i1] * FSM2.O() + FSM2.OS()[s2 * FSM2.I() + i2];
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-//######################################################################
-//# Generate a new FSM representing n stages through the original FSM
-//# AKA radix-n FSM
-//######################################################################
-fsm::fsm(const fsm &FSM, int n)
-{
- d_I=(int) (pow(1.0*FSM.I(),1.0*n)+0.5);
- d_S=FSM.S();
- d_O=(int) (pow(1.0*FSM.O(),1.0*n)+0.5);
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int s=0;s<d_S;s++ ) {
- for(int i=0;i<d_I;i++ ) {
- std::vector<int> ii(n);
- dec2base(i,FSM.I(),ii);
- std::vector<int> oo(n);
- int ns=s;
- for(int k=0;k<n;k++) {
- oo[k]=FSM.OS()[ns*FSM.I()+ii[k]];
- ns=FSM.NS()[ns*FSM.I()+ii[k]];
- }
- d_NS[s*d_I+i]=ns;
- d_OS[s*d_I+i]=base2dec(oo,FSM.O());
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-
-
-
-
-
-//######################################################################
-//# generate the PS and PI tables for later use
-//######################################################################
-void fsm::generate_PS_PI()
-{
- d_PS.resize(d_S);
- d_PI.resize(d_S);
-
- for(int i=0;i<d_S;i++) {
- d_PS[i].resize(d_I*d_S); // max possible size
- d_PI[i].resize(d_I*d_S);
- int j=0;
- for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) {
- if(d_NS[ii*d_I+jj]!=i) continue;
- d_PS[i][j]=ii;
- d_PI[i][j]=jj;
- j++;
- }
- d_PS[i].resize(j);
- d_PI[i].resize(j);
- }
-}
-
-
-//######################################################################
-//# generate the termination matrices TMl and TMi for later use
-//######################################################################
-void fsm::generate_TM()
-{
- d_TMi.resize(d_S*d_S);
- d_TMl.resize(d_S*d_S);
-
- for(int i=0;i<d_S*d_S;i++) {
- d_TMi[i] = -1; // no meaning
- d_TMl[i] = d_S; //infinity: you need at most S-1 steps
- if (i/d_S == i%d_S)
- d_TMl[i] = 0;
- }
-
- for(int s=0;s<d_S;s++) {
- bool done = false;
- int attempts = 0;
- while (done == false && attempts < d_S-1) {
- done = find_es(s);
- attempts ++;
- }
- if (done == false && d_S > 1) {
- //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n");
- printf("fsm::generate_TM(): FSM appears to be disconnected\n");
- printf("state %d cannot be reached from all other states\n",s);
- }
- }
-}
-
-
-// find a path from any state to the ending state "es"
-bool fsm::find_es(int es)
-{
- bool done = true;
- for(int s=0;s<d_S;s++) {
- if(d_TMl[s*d_S+es] < d_S)
- continue;
- int minl=d_S;
- int mini=-1;
- for(int i=0;i<d_I;i++) {
- if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) {
- minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es];
- mini = i;
- }
- }
- if (mini != -1) {
- d_TMl[s*d_S+es]=minl;
- d_TMi[s*d_S+es]=mini;
- }
- else
- done = false;
- }
- return done;
-}
-
-
-
-
-
-//######################################################################
-//# generate trellis representation of FSM as an SVG file
-//######################################################################
-void fsm::write_trellis_svg( std::string filename ,int number_stages)
-{
- std::ofstream trellis_fname (filename.c_str());
- if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}
- const int TRELLIS_Y_OFFSET = 30;
- const int TRELLIS_X_OFFSET = 20;
- const int STAGE_LABEL_Y_OFFSET = 25;
- const int STAGE_LABEL_X_OFFSET = 20;
- const int STATE_LABEL_Y_OFFSET = 30;
- const int STATE_LABEL_X_OFFSET = 5;
- const int STAGE_STATE_OFFSETS = 10;
-// std::cout << "################## BEGIN SVG TRELLIS PIC #####################" << std::endl;
- trellis_fname << "<svg viewBox = \"0 0 200 200\" version = \"1.1\">" << std::endl;
-
- for( int stage_num = 0;stage_num < number_stages;stage_num ++){
- // draw states
- for ( int state_num = 0;state_num < d_S ; state_num ++ ) {
- trellis_fname << "<circle cx = \"" << stage_num * STAGE_STATE_OFFSETS + TRELLIS_X_OFFSET <<
- "\" cy = \"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" r = \"1\"/>" << std::endl;
- //draw branches
- if(stage_num != number_stages-1){
- for( int branch_num = 0;branch_num < d_I; branch_num++){
- trellis_fname << "<line x1 =\"" << STAGE_STATE_OFFSETS * stage_num+ TRELLIS_X_OFFSET << "\" ";
- trellis_fname << "y1 =\"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET<< "\" ";
- trellis_fname << "x2 =\"" << STAGE_STATE_OFFSETS *stage_num + STAGE_STATE_OFFSETS+ TRELLIS_X_OFFSET << "\" ";
- trellis_fname << "y2 =\"" << d_NS[d_I * state_num + branch_num] * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" ";
- trellis_fname << " stroke-dasharray = \"3," << branch_num << "\" ";
- trellis_fname << " stroke = \"black\" stroke-width = \"0.3\"/>" << std::endl;
- }
- }
- }
- }
- // label the stages
- trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;
- for( int stage_num = 0;stage_num < number_stages ;stage_num ++){
- trellis_fname << "<text x = \"" << stage_num * STAGE_STATE_OFFSETS + STAGE_LABEL_X_OFFSET <<
- "\" y = \"" << STAGE_LABEL_Y_OFFSET << "\" >" << std::endl;
- trellis_fname << stage_num << std::endl;
- trellis_fname << "</text>" << std::endl;
- }
- trellis_fname << "</g>" << std::endl;
-
- // label the states
- trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;
- for( int state_num = 0;state_num < d_S ; state_num ++){
- trellis_fname << "<text y = \"" << state_num * STAGE_STATE_OFFSETS + STATE_LABEL_Y_OFFSET <<
- "\" x = \"" << STATE_LABEL_X_OFFSET << "\" >" << std::endl;
- trellis_fname << state_num << std::endl;
- trellis_fname << "</text>" << std::endl;
- }
- trellis_fname << "</g>" << std::endl;
-
-
- trellis_fname << "</svg>" << std::endl;
-// std::cout << "################## END SVG TRELLIS PIC ##################### " << std::endl;
- trellis_fname.close();
-}
-
-
-
-
-
-
-//######################################################################
-//# Write trellis specification to a text file,
-//# in the same format used when reading FSM files
-//######################################################################
-void fsm::write_fsm_txt(std::string filename)
-{
- std::ofstream trellis_fname (filename.c_str());
- if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}
- trellis_fname << d_I << ' ' << d_S << ' ' << d_O << std::endl;
- trellis_fname << std::endl;
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) trellis_fname << d_NS[i*d_I+j] << ' ';
- trellis_fname << std::endl;
- }
- trellis_fname << std::endl;
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) trellis_fname << d_OS[i*d_I+j] << ' ';
- trellis_fname << std::endl;
- }
- trellis_fname << std::endl;
- trellis_fname.close();
-}
-