diff options
Diffstat (limited to 'gr-trellis/lib/fsm.cc')
-rw-r--r-- | gr-trellis/lib/fsm.cc | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/gr-trellis/lib/fsm.cc b/gr-trellis/lib/fsm.cc new file mode 100644 index 0000000000..16efcd10f2 --- /dev/null +++ b/gr-trellis/lib/fsm.cc @@ -0,0 +1,521 @@ +/* -*- c++ -*- */ +/* + * Copyright 2002,2012 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#include <cstdio> +#include <string> +#include <iostream> +#include <fstream> +#include <stdexcept> +#include <cmath> +#include <stdlib.h> +#include <trellis/base.h> +#include <trellis/fsm.h> + +namespace gr { + namespace trellis { + + fsm::fsm() + { + d_I=0; + d_S=0; + d_O=0; + d_NS.resize(0); + d_OS.resize(0); + d_PS.resize(0); + d_PI.resize(0); + d_TMi.resize(0); + d_TMl.resize(0); + } + + fsm::fsm(const fsm &FSM) + { + d_I=FSM.I(); + d_S=FSM.S(); + d_O=FSM.O(); + d_NS=FSM.NS(); + d_OS=FSM.OS(); + d_PS=FSM.PS(); // is this going to make a deep copy? + d_PI=FSM.PI(); + d_TMi=FSM.TMi(); + d_TMl=FSM.TMl(); + } + + fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS) + { + d_I=I; + d_S=S; + d_O=O; + d_NS=NS; + d_OS=OS; + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Read an FSM specification from a file. + //# Format (hopefully will become more flexible in the future...): + //# I S O (in the first line) + //# blank line + //# Next state matrix (S lines, each with I integers separated by spaces) + //# blank line + //# output symbol matrix (S lines, each with I integers separated by spaces) + //# optional comments + //###################################################################### + fsm::fsm(const char *name) + { + FILE *fsmfile; + + if((fsmfile=fopen(name,"r"))==NULL) + throw std::runtime_error ("fsm::fsm(const char *name): file open error\n"); + //printf("file open error in fsm()\n"); + + if(fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O) == EOF) { + if(ferror(fsmfile) != 0) + throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); + } + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + + for(int i=0;i<d_S;i++) { + for(int j=0;j<d_I;j++) { + if(fscanf(fsmfile,"%d",&(d_NS[i*d_I+j])) == EOF) { + if(ferror(fsmfile) != 0) + throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); + } + } + } + for(int i=0;i<d_S;i++) { + for(int j=0;j<d_I;j++) { + if(fscanf(fsmfile,"%d",&(d_OS[i*d_I+j])) == EOF) { + if(ferror(fsmfile) != 0) + throw std::runtime_error ("fsm::fsm(const char *name): file read error\n"); + } + } + } + + fclose(fsmfile); + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Automatically generate the FSM from the generator matrix + //# of a (n,k) binary convolutional code + //###################################################################### + fsm::fsm(int k, int n, const std::vector<int> &G) + { + // calculate maximum memory requirements for each input stream + std::vector<int> max_mem_x(k,-1); + int max_mem = -1; + for(int i=0;i<k;i++) { + for(int j=0;j<n;j++) { + int mem = -1; + if(G[i*n+j]!=0) + mem=(int)(log(double(G[i*n+j]))/log(2.0)); + if(mem>max_mem_x[i]) + max_mem_x[i]=mem; + if(mem>max_mem) + max_mem=mem; + } + } + + //printf("max_mem_x\n"); + //for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n"); + + // calculate total memory requirements to set S + int sum_max_mem = 0; + for(int i=0;i<k;i++) + sum_max_mem += max_mem_x[i]; + + //printf("sum_max_mem = %d\n",sum_max_mem); + + d_I=1<<k; + d_S=1<<sum_max_mem; + d_O=1<<n; + + // binary representation of the G matrix + std::vector<std::vector<int> > Gb(k*n); + for(int j=0;j<k*n;j++) { + Gb[j].resize(max_mem+1); + dec2base(G[j],2,Gb[j]); + //printf("Gb\n"); + //for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n"); + } + + // alphabet size of each shift register + std::vector<int> bases_x(k); + for(int j=0;j<k ;j++) + bases_x[j] = 1 << max_mem_x[j]; + //printf("bases_x\n"); + //for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n"); + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + + std::vector<int> sx(k); + std::vector<int> nsx(k); + std::vector<int> tx(k); + std::vector<std::vector<int> > tb(k); + for(int j=0;j<k;j++) + tb[j].resize(max_mem+1); + std::vector<int> inb(k); + std::vector<int> outb(n); + + for(int s=0;s<d_S;s++) { + dec2bases(s,bases_x,sx); // split s into k values, each representing one of the k shift registers + //printf("state = %d \nstates = ",s); + //for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n"); + for(int i=0;i<d_I;i++) { + dec2base(i,2,inb); // input in binary + //printf("input = %d \ninputs = ",i); + //for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n"); + + // evaluate next state + for(int j=0;j<k;j++) + nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first + d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state + + // evaluate transitions + for(int j=0;j<k;j++) + tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first + for(int j=0;j<k;j++) { + dec2base(tx[j],2,tb[j]); // transition in binary + //printf("transition = %d \ntransitions = ",tx[j]); + //for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n"); + } + + // evaluate outputs + for(int nn=0;nn<n;nn++) { + outb[nn] = 0; + for(int j=0;j<k;j++) { + for(int m=0;m<max_mem+1;m++) + outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011 + //printf("output %d equals %d\n",nn,outb[nn]); + } + } + d_OS[s*d_I+i] = base2dec(outb,2); + } + } + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Automatically generate an FSM specification describing the + //# ISI for a channel + //# of length ch_length and a modulation of size mod_size + //###################################################################### + fsm::fsm(int mod_size, int ch_length) + { + d_I=mod_size; + d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5); + d_O=d_S*d_I; + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + + for(int s=0;s<d_S;s++) { + for(int i=0;i<d_I;i++) { + int t=i*d_S+s; + d_NS[s*d_I+i] = t/d_I; + d_OS[s*d_I+i] = t; + } + } + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Automatically generate an FSM specification describing the + //# the trellis for a CPM with h=K/P (relatively prime), + //# alphabet size M, and frequency pulse duration L symbols + //# + //# This FSM is based on the paper by B. Rimoldi + //# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988 + //# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf + //###################################################################### + fsm::fsm(int P, int M, int L) + { + d_I=M; + d_S=(int)(pow(1.0*M,1.0*L-1)+0.5)*P; + d_O=(int)(pow(1.0*M,1.0*L)+0.5)*P; + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + int nv; + for(int s=0;s<d_S;s++) { + for(int i=0;i<d_I;i++) { + int s1=s/P; + int v=s%P; + int ns1= (i*(int)(pow(1.0*M,1.0*(L-1))+0.5)+s1)/M; + if (L==1) + nv=(i+v)%P; + else + nv=(s1%M+v)%P; + d_NS[s*d_I+i] = ns1*P+nv; + d_OS[s*d_I+i] = i*d_S+s; + } + } + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Automatically generate an FSM specification describing the + //# the joint trellis of fsm1 and fsm2 + //###################################################################### + fsm::fsm(const fsm &FSM1, const fsm &FSM2) + { + d_I=FSM1.I()*FSM2.I(); + d_S=FSM1.S()*FSM2.S(); + d_O=FSM1.O()*FSM2.O(); + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + + for(int s=0;s<d_S;s++) { + for(int i=0;i<d_I;i++) { + int s1=s/FSM2.S(); + int s2=s%FSM2.S(); + int i1=i/FSM2.I(); + int i2=i%FSM2.I(); + d_NS[s*d_I+i] = FSM1.NS()[s1 * FSM1.I() + i1] * FSM2.S() + FSM2.NS()[s2 * FSM2.I() + i2]; + d_OS[s*d_I+i] = FSM1.OS()[s1 * FSM1.I() + i1] * FSM2.O() + FSM2.OS()[s2 * FSM2.I() + i2]; + } + } + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# Generate a new FSM representing n stages through the original FSM + //# AKA radix-n FSM + //###################################################################### + fsm::fsm(const fsm &FSM, int n) + { + d_I=(int) (pow(1.0*FSM.I(),1.0*n)+0.5); + d_S=FSM.S(); + d_O=(int) (pow(1.0*FSM.O(),1.0*n)+0.5); + + d_NS.resize(d_I*d_S); + d_OS.resize(d_I*d_S); + + for(int s=0;s<d_S;s++ ) { + for(int i=0;i<d_I;i++ ) { + std::vector<int> ii(n); + dec2base(i,FSM.I(),ii); + std::vector<int> oo(n); + int ns=s; + for(int k=0;k<n;k++) { + oo[k]=FSM.OS()[ns*FSM.I()+ii[k]]; + ns=FSM.NS()[ns*FSM.I()+ii[k]]; + } + d_NS[s*d_I+i]=ns; + d_OS[s*d_I+i]=base2dec(oo,FSM.O()); + } + } + + generate_PS_PI(); + generate_TM(); + } + + //###################################################################### + //# generate the PS and PI tables for later use + //###################################################################### + void + fsm::generate_PS_PI() + { + d_PS.resize(d_S); + d_PI.resize(d_S); + + for(int i=0;i<d_S;i++) { + d_PS[i].resize(d_I*d_S); // max possible size + d_PI[i].resize(d_I*d_S); + int j=0; + for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) { + if(d_NS[ii*d_I+jj]!=i) continue; + d_PS[i][j]=ii; + d_PI[i][j]=jj; + j++; + } + d_PS[i].resize(j); + d_PI[i].resize(j); + } + } + + //###################################################################### + //# generate the termination matrices TMl and TMi for later use + //###################################################################### + void + fsm::generate_TM() + { + d_TMi.resize(d_S*d_S); + d_TMl.resize(d_S*d_S); + + for(int i=0;i<d_S*d_S;i++) { + d_TMi[i] = -1; // no meaning + d_TMl[i] = d_S; //infinity: you need at most S-1 steps + if (i/d_S == i%d_S) + d_TMl[i] = 0; + } + + for(int s=0;s<d_S;s++) { + bool done = false; + int attempts = 0; + while (done == false && attempts < d_S-1) { + done = find_es(s); + attempts ++; + } + if (done == false && d_S > 1) { + //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n"); + printf("fsm::generate_TM(): FSM appears to be disconnected\n"); + printf("state %d cannot be reached from all other states\n",s); + } + } + } + + // find a path from any state to the ending state "es" + bool + fsm::find_es(int es) + { + bool done = true; + for(int s=0;s<d_S;s++) { + if(d_TMl[s*d_S+es] < d_S) + continue; + int minl=d_S; + int mini=-1; + for(int i=0;i<d_I;i++) { + if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) { + minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es]; + mini = i; + } + } + if (mini != -1) { + d_TMl[s*d_S+es]=minl; + d_TMi[s*d_S+es]=mini; + } + else + done = false; + } + return done; + } + + //###################################################################### + //# generate trellis representation of FSM as an SVG file + //###################################################################### + void + fsm::write_trellis_svg(std::string filename, int number_stages) + { + std::ofstream trellis_fname (filename.c_str()); + if(!trellis_fname) { + std::cout << "file not found " << std::endl ; exit(-1); + } + const int TRELLIS_Y_OFFSET = 30; + const int TRELLIS_X_OFFSET = 20; + const int STAGE_LABEL_Y_OFFSET = 25; + const int STAGE_LABEL_X_OFFSET = 20; + const int STATE_LABEL_Y_OFFSET = 30; + const int STATE_LABEL_X_OFFSET = 5; + const int STAGE_STATE_OFFSETS = 10; + // std::cout << "################## BEGIN SVG TRELLIS PIC #####################" << std::endl; + trellis_fname << "<svg viewBox = \"0 0 200 200\" version = \"1.1\">" << std::endl; + + for(int stage_num = 0;stage_num < number_stages;stage_num ++) { + // draw states + for(int state_num = 0;state_num < d_S ; state_num ++ ) { + trellis_fname << "<circle cx = \"" << stage_num * STAGE_STATE_OFFSETS + TRELLIS_X_OFFSET << + "\" cy = \"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" r = \"1\"/>" << std::endl; + //draw branches + if(stage_num != number_stages-1) { + for(int branch_num = 0;branch_num < d_I; branch_num++) { + trellis_fname << "<line x1 =\"" << STAGE_STATE_OFFSETS * stage_num+ TRELLIS_X_OFFSET << "\" "; + trellis_fname << "y1 =\"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET<< "\" "; + trellis_fname << "x2 =\"" << STAGE_STATE_OFFSETS *stage_num + STAGE_STATE_OFFSETS+ TRELLIS_X_OFFSET << "\" "; + trellis_fname << "y2 =\"" << d_NS[d_I * state_num + branch_num] * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" "; + trellis_fname << " stroke-dasharray = \"3," << branch_num << "\" "; + trellis_fname << " stroke = \"black\" stroke-width = \"0.3\"/>" << std::endl; + } + } + } + } + // label the stages + trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl; + for(int stage_num = 0;stage_num < number_stages ;stage_num ++) { + trellis_fname << "<text x = \"" << stage_num * STAGE_STATE_OFFSETS + STAGE_LABEL_X_OFFSET << + "\" y = \"" << STAGE_LABEL_Y_OFFSET << "\" >" << std::endl; + trellis_fname << stage_num << std::endl; + trellis_fname << "</text>" << std::endl; + } + trellis_fname << "</g>" << std::endl; + + // label the states + trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl; + for(int state_num = 0;state_num < d_S ; state_num ++) { + trellis_fname << "<text y = \"" << state_num * STAGE_STATE_OFFSETS + STATE_LABEL_Y_OFFSET << + "\" x = \"" << STATE_LABEL_X_OFFSET << "\" >" << std::endl; + trellis_fname << state_num << std::endl; + trellis_fname << "</text>" << std::endl; + } + trellis_fname << "</g>" << std::endl; + + trellis_fname << "</svg>" << std::endl; + // std::cout << "################## END SVG TRELLIS PIC ##################### " << std::endl; + trellis_fname.close(); + } + + //###################################################################### + //# Write trellis specification to a text file, + //# in the same format used when reading FSM files + //###################################################################### + void + fsm::write_fsm_txt(std::string filename) + { + std::ofstream trellis_fname (filename.c_str()); + if(!trellis_fname) { + std::cout << "file not found " << std::endl ; exit(-1); + } + trellis_fname << d_I << ' ' << d_S << ' ' << d_O << std::endl; + trellis_fname << std::endl; + for(int i=0;i<d_S;i++) { + for(int j=0;j<d_I;j++) + trellis_fname << d_NS[i*d_I+j] << ' '; + trellis_fname << std::endl; + } + trellis_fname << std::endl; + for(int i=0;i<d_S;i++) { + for(int j=0;j<d_I;j++) + trellis_fname << d_OS[i*d_I+j] << ' '; + trellis_fname << std::endl; + } + trellis_fname << std::endl; + trellis_fname.close(); + } + + } /* namespace trellis */ +} /* namespace gr */ |