summaryrefslogtreecommitdiff
path: root/gr-digital/examples/berawgn.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-digital/examples/berawgn.py')
-rw-r--r--[-rwxr-xr-x]gr-digital/examples/berawgn.py23
1 files changed, 13 insertions, 10 deletions
diff --git a/gr-digital/examples/berawgn.py b/gr-digital/examples/berawgn.py
index c47d99174a..886c93bdfe 100755..100644
--- a/gr-digital/examples/berawgn.py
+++ b/gr-digital/examples/berawgn.py
@@ -32,6 +32,10 @@ Of course, expect the maximum value for BER to be one order of
magnitude below what you chose for N_BITS.
"""
+from __future__ import print_function
+from __future__ import division
+from __future__ import unicode_literals
+
import math
import numpy
@@ -43,13 +47,13 @@ import sys
try:
from scipy.special import erfc
except ImportError:
- print "Error: could not import scipy (http://www.scipy.org/)"
+ print("Error: could not import scipy (http://www.scipy.org/)")
sys.exit(1)
try:
import pylab
except ImportError:
- print "Error: could not import pylab (http://matplotlib.sourceforge.net/)"
+ print("Error: could not import pylab (http://matplotlib.sourceforge.net/)")
sys.exit(1)
# Best to choose powers of 10
@@ -58,7 +62,7 @@ RAND_SEED = 42
def berawgn(EbN0):
""" Calculates theoretical bit error rate in AWGN (for BPSK and given Eb/N0) """
- return 0.5 * erfc(math.sqrt(10**(float(EbN0)/10)))
+ return 0.5 * erfc(math.sqrt(10**(float(EbN0) / 10)))
class BitErrors(gr.hier_block2):
""" Two inputs: true and received bits. We compare them and
@@ -81,7 +85,7 @@ class BitErrors(gr.hier_block2):
blocks.unpack_k_bits_bb(bits_per_byte),
blocks.uchar_to_float(),
blocks.integrate_ff(intdump_decim),
- blocks.multiply_const_ff(1.0/N_BITS),
+ blocks.multiply_const_ff(1.0 / N_BITS),
self)
self.connect((self, 1), (comp, 1))
@@ -91,7 +95,7 @@ class BERAWGNSimu(gr.top_block):
gr.top_block.__init__(self)
self.const = digital.qpsk_constellation()
# Source is N_BITS bits, non-repeated
- data = map(int, numpy.random.randint(0, self.const.arity(), N_BITS/self.const.bits_per_symbol()))
+ data = list(map(int, numpy.random.randint(0, self.const.arity(), N_BITS / self.const.bits_per_symbol())))
src = blocks.vector_source_b(data, False)
mod = digital.chunks_to_symbols_bc((self.const.points()), 1)
add = blocks.add_vcc()
@@ -107,12 +111,12 @@ class BERAWGNSimu(gr.top_block):
def EbN0_to_noise_voltage(self, EbN0):
""" Converts Eb/N0 to a complex noise voltage (assuming unit symbol power) """
- return 1.0 / math.sqrt(self.const.bits_per_symbol() * 10**(float(EbN0)/10))
+ return 1.0 / math.sqrt(self.const.bits_per_symbol( * 10**(float(EbN0) / 10)))
def simulate_ber(EbN0):
""" All the work's done here: create flow graph, run, read out BER """
- print "Eb/N0 = %d dB" % EbN0
+ print("Eb/N0 = %d dB" % EbN0)
fg = BERAWGNSimu(EbN0)
fg.run()
return numpy.sum(fg.sink.data())
@@ -120,9 +124,9 @@ def simulate_ber(EbN0):
if __name__ == "__main__":
EbN0_min = 0
EbN0_max = 15
- EbN0_range = range(EbN0_min, EbN0_max+1)
+ EbN0_range = list(range(EbN0_min, EbN0_max+1))
ber_theory = [berawgn(x) for x in EbN0_range]
- print "Simulating..."
+ print("Simulating...")
ber_simu = [simulate_ber(x) for x in EbN0_range]
f = pylab.figure()
@@ -135,4 +139,3 @@ if __name__ == "__main__":
s.legend()
s.grid()
pylab.show()
-