summaryrefslogtreecommitdiff
path: root/docs/exploring-gnuradio
diff options
context:
space:
mode:
Diffstat (limited to 'docs/exploring-gnuradio')
-rwxr-xr-xdocs/exploring-gnuradio/dial_tone.py25
-rw-r--r--docs/exploring-gnuradio/dial_tone_example.xml21
-rw-r--r--docs/exploring-gnuradio/exploring-gnuradio.xml2
-rwxr-xr-xdocs/exploring-gnuradio/fm_demod.py115
-rw-r--r--docs/exploring-gnuradio/fm_demod_example.xml72
5 files changed, 120 insertions, 115 deletions
diff --git a/docs/exploring-gnuradio/dial_tone.py b/docs/exploring-gnuradio/dial_tone.py
index cabfa0864d..ba43c43bfc 100755
--- a/docs/exploring-gnuradio/dial_tone.py
+++ b/docs/exploring-gnuradio/dial_tone.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python
#
-# Copyright 2004,2007 Free Software Foundation, Inc.
+# Copyright 2004,2007,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
@@ -22,22 +22,23 @@
from gnuradio import gr
from gnuradio import audio
+from gnuradio import analog
-def build_graph ():
+def build_graph():
sampling_freq = 32000
ampl = 0.1
- tb = gr.top_block ()
- src0 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 350, ampl)
- src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 440, ampl)
- dst = audio.sink (sampling_freq)
- tb.connect (src0, (dst, 0))
- tb.connect (src1, (dst, 1))
+ tb = gr.top_block()
+ src0 = analog.sig_source_f(sampling_freq, analog.GR_SIN_WAVE, 350, ampl)
+ src1 = analog.sig_source_f(sampling_freq, analog.GR_SIN_WAVE, 440, ampl)
+ dst = audio.sink(sampling_freq)
+ tb.connect(src0, (dst, 0))
+ tb.connect(src1, (dst, 1))
return tb
if __name__ == '__main__':
- tb = build_graph ()
- tb.start ()
- raw_input ('Press Enter to quit: ')
- tb.stop ()
+ tb = build_graph()
+ tb.start()
+ raw_input('Press Enter to quit: ')
+ tb.stop()
diff --git a/docs/exploring-gnuradio/dial_tone_example.xml b/docs/exploring-gnuradio/dial_tone_example.xml
index 14ea68039e..5d193df776 100644
--- a/docs/exploring-gnuradio/dial_tone_example.xml
+++ b/docs/exploring-gnuradio/dial_tone_example.xml
@@ -5,24 +5,25 @@
from gnuradio import gr
from gnuradio import audio
+from gnuradio import analog
def build_graph ():
sampling_freq = 48000
ampl = 0.1
- fg = gr.flow_graph ()
- src0 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 350, ampl)
- src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 440, ampl)
- dst = audio.sink (sampling_freq)
- fg.connect ((src0, 0), (dst, 0))
- fg.connect ((src1, 0), (dst, 1))
+ fg = gr.flow_graph()
+ src0 = analog.sig_source_f(sampling_freq, analog.GR_SIN_WAVE, 350, ampl)
+ src1 = analog.sig_source_f(sampling_freq, analog.GR_SIN_WAVE, 440, ampl)
+ dst = audio.sink(sampling_freq)
+ fg.connect((src0, 0), (dst, 0))
+ fg.connect((src1, 0), (dst, 1))
return fg
if __name__ == '__main__':
- fg = build_graph ()
- fg.start ()
- raw_input ('Press Enter to quit: ')
- fg.stop ()
+ fg = build_graph()
+ fg.start()
+ raw_input('Press Enter to quit: ')
+ fg.stop()
</programlisting>
</example>
diff --git a/docs/exploring-gnuradio/exploring-gnuradio.xml b/docs/exploring-gnuradio/exploring-gnuradio.xml
index 286ca86095..5b70d4d0bf 100644
--- a/docs/exploring-gnuradio/exploring-gnuradio.xml
+++ b/docs/exploring-gnuradio/exploring-gnuradio.xml
@@ -180,7 +180,7 @@ right.</para>
<para>We start by creating a flow graph to hold the blocks and
connections between them. The two sine waves are generated by the
-gr.sig_source_f calls. The f suffix indicates that the source produces
+analog.sig_source_f calls. The f suffix indicates that the source produces
floats. One sine wave is at 350 Hz, and the other is at
440 Hz. Together, they sound like the US dial tone.</para>
diff --git a/docs/exploring-gnuradio/fm_demod.py b/docs/exploring-gnuradio/fm_demod.py
index 0071fd751e..7b19cd826a 100755
--- a/docs/exploring-gnuradio/fm_demod.py
+++ b/docs/exploring-gnuradio/fm_demod.py
@@ -1,18 +1,19 @@
#!/usr/bin/env python
from gnuradio import gr
+from gnuradio import analog
from gnuradio import audio
from gnuradio import mc4020
import sys
-def high_speed_adc (fg, input_rate):
+def high_speed_adc(fg, input_rate):
# return gr.file_source (gr.sizeof_short, "dummy.dat", False)
- return mc4020.source (input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V)
+ return mc4020.source(input_rate, mc4020.MCC_CH3_EN | mc4020.MCC_ALL_1V)
#
# return a gr.flow_graph
#
-def build_graph (freq1, freq2):
+def build_graph(freq1, freq2):
input_rate = 20e6
cfir_decimation = 125
audio_decimation = 5
@@ -20,35 +21,35 @@ def build_graph (freq1, freq2):
quad_rate = input_rate / cfir_decimation
audio_rate = quad_rate / audio_decimation
- fg = gr.flow_graph ()
+ fg = gr.flow_graph()
# use high speed ADC as input source
- src = high_speed_adc (fg, input_rate)
+ src = high_speed_adc(fg, input_rate)
# compute FIR filter taps for channel selection
channel_coeffs = \
- gr.firdes.low_pass (1.0, # gain
- input_rate, # sampling rate
- 250e3, # low pass cutoff freq
- 8*100e3, # width of trans. band
- gr.firdes.WIN_HAMMING)
+ filter.firdes.low_pass(1.0, # gain
+ input_rate, # sampling rate
+ 250e3, # low pass cutoff freq
+ 8*100e3, # width of trans. band
+ filter.firdes.WIN_HAMMING)
# input: short; output: complex
chan_filter1 = \
- gr.freq_xlating_fir_filter_scf (cfir_decimation,
- channel_coeffs,
- freq1, # 1st station freq
- input_rate)
+ filter.freq_xlating_fir_filter_scf(cfir_decimation,
+ channel_coeffs,
+ freq1, # 1st station freq
+ input_rate)
- (head1, tail1) = build_pipeline (fg, quad_rate, audio_decimation)
+ (head1, tail1) = build_pipeline(fg, quad_rate, audio_decimation)
# sound card as final sink
- audio_sink = audio.sink (int (audio_rate))
+ audio_sink = audio.sink(int (audio_rate))
# now wire it all together
- fg.connect (src, chan_filter1)
- fg.connect (chan_filter1, head1)
- fg.connect (tail1, (audio_sink, 0))
+ fg.connect(src, chan_filter1)
+ fg.connect(chan_filter1, head1)
+ fg.connect(tail1, (audio_sink, 0))
# two stations at once?
if freq2:
@@ -57,20 +58,20 @@ def build_graph (freq1, freq2):
# input: short; output: complex
chan_filter2 = \
- gr.freq_xlating_fir_filter_scf (cfir_decimation,
- channel_coeffs,
- freq2, # 2nd station freq
- input_rate)
+ filter.freq_xlating_fir_filter_scf(cfir_decimation,
+ channel_coeffs,
+ freq2, # 2nd station freq
+ input_rate)
- (head2, tail2) = build_pipeline (fg, quad_rate, audio_decimation)
+ (head2, tail2) = build_pipeline(fg, quad_rate, audio_decimation)
- fg.connect (src, chan_filter2)
- fg.connect (chan_filter2, head2)
- fg.connect (tail2, (audio_sink, 1))
+ fg.connect(src, chan_filter2)
+ fg.connect(chan_filter2, head2)
+ fg.connect(tail2, (audio_sink, 1))
return fg
-def build_pipeline (fg, quad_rate, audio_decimation):
+def build_pipeline(fg, quad_rate, audio_decimation):
'''Given a flow_graph, fg, construct a pipeline
for demodulating a broadcast FM signal. The
input is the downconverteed complex baseband
@@ -84,67 +85,67 @@ def build_pipeline (fg, quad_rate, audio_decimation):
volume = 1.0
# input: complex; output: float
- fm_demod = gr.quadrature_demod_cf (volume*fm_demod_gain)
+ fm_demod = analog.quadrature_demod_cf(volume*fm_demod_gain)
# compute FIR filter taps for audio filter
width_of_transition_band = audio_rate / 32
- audio_coeffs = gr.firdes.low_pass (1.0, # gain
- quad_rate, # sampling rate
- audio_rate/2 - width_of_transition_band,
- width_of_transition_band,
- gr.firdes.WIN_HAMMING)
+ audio_coeffs = filter.firdes.low_pass(1.0, # gain
+ quad_rate, # sampling rate
+ audio_rate/2 - width_of_transition_band,
+ width_of_transition_band,
+ filter.firdes.WIN_HAMMING)
# input: float; output: float
- audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
+ audio_filter = filter.fir_filter_fff(audio_decimation, audiocoeffs)
- fg.connect (fm_demod, audio_filter)
+ fg.connect(fm_demod, audio_filter)
return ((fm_demod, 0), (audio_filter, 0))
-def main (args):
- nargs = len (args)
+def main(args):
+ nargs = len(args)
if nargs == 1:
- freq1 = float (args[0]) * 1e6
+ freq1 = float(args[0]) * 1e6
freq2 = None
elif nargs == 2:
- freq1 = float (args[0]) * 1e6
- freq2 = float (args[1]) * 1e6
+ freq1 = float(args[0]) * 1e6
+ freq2 = float(args[1]) * 1e6
else:
- sys.stderr.write ('usage: fm_demod freq1 [freq2]\n')
- sys.exit (1)
+ sys.stderr.write('usage: fm_demod freq1 [freq2]\n')
+ sys.exit(1)
# connect to RF front end
- rf_front_end = gr.microtune_4937_eval_board ()
- if not rf_front_end.board_present_p ():
+ rf_front_end = gr.microtune_4937_eval_board()
+ if not rf_front_end.board_present_p():
raise IOError, 'RF front end not found'
# set front end gain
- rf_front_end.set_AGC (300)
- IF_freq = rf_front_end.get_output_freq ()
+ rf_front_end.set_AGC(300)
+ IF_freq = rf_front_end.get_output_freq()
IF_freq = 5.75e6
if not freq2: # one station
- rf_front_end.set_RF_freq (freq1)
- fg = build_graph (IF_freq, None)
+ rf_front_end.set_RF_freq(freq1)
+ fg = build_graph(IF_freq, None)
else: # two stations
- if abs (freq1 - freq2) > 5.5e6:
+ if abs(freq1 - freq2) > 5.5e6:
raise IOError, 'freqs too far apart'
target_freq = (freq1 + freq2) / 2
- actual_freq = rf_front_end.set_RF_freq (target_freq)
+ actual_freq = rf_front_end.set_RF_freq(target_freq)
#actual_freq = target_freq
- fg = build_graph (IF_freq + freq1 - actual_freq,
- IF_freq + freq2 - actual_freq)
+ fg = build_graph(IF_freq + freq1 - actual_freq,
+ IF_freq + freq2 - actual_freq)
- fg.start () # fork thread(s) and return
- raw_input ('Press Enter to quit: ')
- fg.stop ()
+ fg.start() # fork thread(s) and return
+ raw_input('Press Enter to quit: ')
+ fg.stop()
if __name__ == '__main__':
- main (sys.argv[1:])
+ main(sys.argv[1:])
diff --git a/docs/exploring-gnuradio/fm_demod_example.xml b/docs/exploring-gnuradio/fm_demod_example.xml
index b417da0a81..05c2ee163b 100644
--- a/docs/exploring-gnuradio/fm_demod_example.xml
+++ b/docs/exploring-gnuradio/fm_demod_example.xml
@@ -4,6 +4,8 @@
#!/usr/bin/env python
from gnuradio import gr
+from gnuradio import filter
+from gnuradio import analog
from gnuradio import audio
from gnuradio import mc4020
import sys
@@ -30,28 +32,28 @@ def build_graph (freq1, freq2):
# compute FIR filter taps for channel selection
channel_coeffs = \
- gr.firdes.low_pass (1.0, # gain
- input_rate, # sampling rate
- 250e3, # low pass cutoff freq
- 8*100e3, # width of trans. band
- gr.firdes.WIN_HAMMING)
+ filter.firdes.low_pass(1.0, # gain
+ input_rate, # sampling rate
+ 250e3, # low pass cutoff freq
+ 8*100e3, # width of trans. band
+ filter.firdes.WIN_HAMMING)
# input: short; output: complex
chan_filter1 = \
- gr.freq_xlating_fir_filter_scf (cfir_decimation,
- channel_coeffs,
- freq1, # 1st station freq
- input_rate)
+ filter.freq_xlating_fir_filter_scf(cfir_decimation,
+ channel_coeffs,
+ freq1, # 1st station freq
+ input_rate)
- (head1, tail1) = build_pipeline (fg, quad_rate, audio_decimation)
+ (head1, tail1) = build_pipeline(fg, quad_rate, audio_decimation)
# sound card as final sink
- audio_sink = audio.sink (int (audio_rate))
+ audio_sink = audio.sink(int (audio_rate))
# now wire it all together
- fg.connect (src, chan_filter1)
- fg.connect (chan_filter1, head1)
- fg.connect (tail1, (audio_sink, 0))
+ fg.connect(src, chan_filter1)
+ fg.connect(chan_filter1, head1)
+ fg.connect(tail1, (audio_sink, 0))
return fg
@@ -69,20 +71,20 @@ def build_pipeline (fg, quad_rate, audio_decimation):
volume = 1.0
# input: complex; output: float
- fm_demod = gr.quadrature_demod_cf (volume*fm_demod_gain)
+ fm_demod = analog.quadrature_demod_cf(volume*fm_demod_gain)
# compute FIR filter taps for audio filter
width_of_transition_band = audio_rate / 32
- audio_coeffs = gr.firdes.low_pass (1.0, # gain
- quad_rate, # sampling rate
- audio_rate/2 - width_of_transition_band,
- width_of_transition_band,
- gr.firdes.WIN_HAMMING)
+ audio_coeffs = filter.firdes.low_pass(1.0, # gain
+ quad_rate, # sampling rate
+ audio_rate/2 - width_of_transition_band,
+ width_of_transition_band,
+ filter.firdes.WIN_HAMMING)
# input: float; output: float
- audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
+ audio_filter = filter.fir_filter_fff(audio_decimation, audio_coeffs)
- fg.connect (fm_demod, audio_filter)
+ fg.connect(fm_demod, audio_filter)
return ((fm_demod, 0), (audio_filter, 0))
@@ -90,34 +92,34 @@ def main (args):
nargs = len (args)
if nargs == 1:
# get station frequency from command line
- freq1 = float (args[0]) * 1e6
+ freq1 = float(args[0]) * 1e6
else:
- sys.stderr.write ('usage: fm_demod freq\n')
- sys.exit (1)
+ sys.stderr.write('usage: fm_demod freq\n')
+ sys.exit(1)
# connect to RF front end
- rf_front_end = gr.microtune_4937_eval_board ()
- if not rf_front_end.board_present_p ():
+ rf_front_end = gr.microtune_4937_eval_board()
+ if not rf_front_end.board_present_p():
raise IOError, 'RF front end not found'
# set front end gain
- rf_front_end.set_AGC (300)
+ rf_front_end.set_AGC(300)
# determine the front end's "Intermediate Frequency"
- IF_freq = rf_front_end.get_output_freq () # 5.75e6
+ IF_freq = rf_front_end.get_output_freq() # 5.75e6
# Tell the front end to tune to freq1.
# I.e., freq1 is translated down to the IF frequency
- rf_front_end.set_RF_freq (freq1)
+ rf_front_end.set_RF_freq(freq1)
# build the flow graph
- fg = build_graph (IF_freq, None)
+ fg = build_graph(IF_freq, None)
- fg.start () # fork thread(s) and return
- raw_input ('Press Enter to quit: ')
- fg.stop ()
+ fg.start() # fork thread(s) and return
+ raw_input('Press Enter to quit: ')
+ fg.stop()
if __name__ == '__main__':
- main (sys.argv[1:])
+ main(sys.argv[1:])
</programlisting>
</example>